Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39056970

RESUMO

In his groundbreaking 1905 paper on special relativity, Einstein distinguished between local and global time in inertial systems, introducing his famous definition of distant simultaneity to give physical content to the notion of global time. Over the following decade, Einstein attempted to generalize this analysis of relativistic time to include accelerated frames of reference, which, according to the principle of equivalence, should also account for time in the presence of gravity. Characteristically, Einstein's methodology during this period focused on simple, intuitively accessible physical situations, exhibiting a high degree of symmetry. However, in the final general theory of relativity, the a priori existence of such global symmetries cannot be assumed. Despite this, Einstein repeated some of his early reasoning patterns even in his 1916 review paper on general relativity and in later writings. Modern commentators have criticized these arguments as confused, invalid, and inconsistent. Here, we defend Einstein in the specific context of his use of global time and his derivations of the gravitational redshift formula. We argue that a detailed examination of Einstein's early work clarifies his later reasoning and demonstrates its consistency and validity.

2.
Entropy (Basel) ; 23(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202479

RESUMO

The transverse momentum spectra of different types of particles, π±, K±, p and p¯, produced at mid-(pseudo)rapidity in different centrality lead-lead (Pb-Pb) collisions at 2.76 TeV; proton-lead (p-Pb) collisions at 5.02 TeV; xenon-xenon (Xe-Xe) collisions at 5.44 TeV; and proton-proton (p-p) collisions at 0.9, 2.76, 5.02, 7 and 13 TeV, were analyzed by the blast-wave model with fluctuations. With the experimental data measured by the ALICE and CMS Collaborations at the Large Hadron Collider (LHC), the kinetic freeze-out temperature, transverse flow velocity and proper time were extracted from fitting the transverse momentum spectra. In nucleus-nucleus (A-A) and proton-nucleus (p-A) collisions, the three parameters decrease with the decrease of event centrality from central to peripheral, indicating higher degrees of excitation, quicker expansion velocities and longer evolution times for central collisions. In p-p collisions, the kinetic freeze-out temperature is nearly invariant with the increase of energy, though the transverse flow velocity and proper time increase slightly, in the considered energy range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA