Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 74(2): 378-392.e5, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30904392

RESUMO

Protein kinase C (PKC) isozymes function as tumor suppressors in increasing contexts. In contrast to oncogenic kinases, whose function is acutely regulated by transient phosphorylation, PKC is constitutively phosphorylated following biosynthesis to yield a stable, autoinhibited enzyme that is reversibly activated by second messengers. Here, we report that the phosphatase PHLPP1 opposes PKC phosphorylation during maturation, leading to the degradation of aberrantly active species that do not become autoinhibited. Cancer-associated hotspot mutations in the pseudosubstrate of PKCß that impair autoinhibition result in dephosphorylated and unstable enzymes. Protein-level analysis reveals that PKCα is fully phosphorylated at the PHLPP site in over 5,000 patient tumors, with higher PKC levels correlating (1) inversely with PHLPP1 levels and (2) positively with improved survival in pancreatic adenocarcinoma. Thus, PHLPP1 provides a proofreading step that maintains the fidelity of PKC autoinhibition and reveals a prominent loss-of-function mechanism in cancer by suppressing the steady-state levels of PKC.


Assuntos
Neoplasias/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Proteína Quinase C beta/genética , Proteína Quinase C-alfa/genética , Humanos , Isoenzimas/genética , Mutação com Perda de Função/genética , Neoplasias/patologia , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Controle de Qualidade , Transdução de Sinais/genética
2.
Mol Cell ; 73(5): 1075-1082.e4, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849388

RESUMO

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.


Assuntos
Anticorpos/metabolismo , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligopeptídeos/metabolismo , Análise Serial de Proteínas/métodos , Afinidade de Anticorpos , Especificidade de Anticorpos , Automação Laboratorial , Sítios de Ligação de Anticorpos , Catálise , Análise Mutacional de DNA/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Cinética , Mutação , O(6)-Metilguanina-DNA Metiltransferase/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Oligopeptídeos/genética , Análise Serial de Proteínas/instrumentação , Ligação Proteica , Engenharia de Proteínas , Fluxo de Trabalho
3.
Cancer Sci ; 115(5): 1378-1387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409909

RESUMO

The last few decades have seen remarkable strides in the field of cancer therapy. Precision oncology coupled with comprehensive genomic profiling has become routine clinical practice for solid tumors, the advent of immune checkpoint inhibitors has transformed the landscape of oncology treatment, and the number of cancer drug approvals has continued to increase. Nevertheless, the application of genomics-driven precision oncology has thus far benefited only 10%-20% of cancer patients, leaving the majority without matched treatment options. This limitation underscores the need to explore alternative avenues with regard to selecting patients for targeted therapies. In contrast with genomics-based approaches, proteomics-based strategies offer a more precise understanding of the intricate biological processes driving cancer pathogenesis. This perspective underscores the importance of integrating complementary proteomic analyses into the next phase of precision oncology to establish robust biomarker-drug associations and surmount challenges related to drug resistance. One promising technology in this regard is the reverse-phase protein array (RPPA), which excels in quantitatively detecting protein modifications, even with limited amounts of sample. Its cost-effectiveness and rapid turnaround time further bolster its appeal for application in clinical settings. Here, we review the current status of genomics-driven precision oncology, as well as its limitations, with an emphasis on drug resistance. Subsequently, we explore the application of RPPA technology as a catalyst for advancing precision oncology. Through illustrative examples drawn from clinical trials, we demonstrate its utility for unraveling the molecular mechanisms underlying drug responses and resistance.


Assuntos
Neoplasias , Medicina de Precisão , Análise Serial de Proteínas , Proteômica , Humanos , Medicina de Precisão/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Análise Serial de Proteínas/métodos , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Genômica/métodos , Oncologia/métodos , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular/métodos
4.
Genes Cells ; 28(4): 288-306, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36788710

RESUMO

Ionizing radiation damages DNA and may lead to the development of cancer. Irradiation also generates reactive oxygen species (ROS) which cause damage to various biological molecules. Relatively low dose-rate irradiation causes less damage. However, the damage and its effects on cell fate are difficult to evaluate. To develop a method to analyze the damage and accompanying changes in physiology in cells irradiated by γ-rays at a relatively low dose-rate, we used the protein array technique to quantify marker proteins involved in the stress response and the regulation of cell growth and death. This method enabled efficient analyses of many replicates of experimental data on cell lysate samples. We detected relatively small changes in the levels of these proteins in the irradiated cells. Changes in protein levels suggested ROS production and DNA damage as well as cell cycle retardation and the progression of cellular senescence. Thus, our approach shows promise for analyzing the biological effects of relatively low dose-rate irradiation.


Assuntos
Senescência Celular , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Raios gama , Senescência Celular/genética , Diferenciação Celular
5.
Mol Carcinog ; 63(7): 1248-1259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558423

RESUMO

Epithelial ovarian cancers that are nonhomologous recombination deficient, as well as those that are recurrent and in a platinum-resistant state, have limited therapeutic options. The objectives of this study were to characterize the mechanism of action and investigate the therapeutic potential of a small molecule, VDX-111, against ovarian cancer. We examined the ability of VDX-111 to inhibit the growth of a panel of ovarian cancer cell lines, focusing on BRCA wild-type lines. We found that VDX-111 causes a dose-dependent loss of cell viability across ovarian cancer cell lines. Reverse phase protein array (RPPA) analysis was used to identify changes in cell signaling in response to VDX-111 treatment. An RPPA analysis performed on cells treated with VDX-111 detected changes in cell signaling related to autophagy and necroptosis. Immunoblots of OVCAR3 and SNU8 cells confirmed a dose-dependent increase in LC3A/B and RIPK1. Incucyte live cell imaging was used to measure cell proliferation and death in response to VDX-111 alone and with inhibitors of apoptosis, necroptosis, and autophagy. Annexin/PI assays suggested predominantly nonapoptotic cell death, while real-time kinetic imaging of cell growth indicated the necroptosis inhibitor, necrostatin-1, attenuates VDX-111-induced loss of cell viability, suggesting a necroptosis-dependent mechanism. Furthermore, VDX-111 inhibited tumor growth in patient-derived xenograft and syngeneic murine models. In conclusion, the cytotoxic effects of VDX-111 seen in vitro and in vivo appear to occur in a necroptosis-dependent manner and may promote an antitumor immune response.


Assuntos
Proliferação de Células , Necroptose , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Feminino , Animais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Necroptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Transdução de Sinais/efeitos dos fármacos , Imidazóis/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38290780

RESUMO

OBJECTIVES: To identify and characterize undescribed systemic sclerosis (SSc)-specific autoantibodies targeting nucleolar antigens and to assess their clinical significance. METHODS: We conducted proteome-wide autoantibody screening (PWAS) against serum samples from SSc patients with nucleolar patterned anti-nuclear antibodies (NUC-ANAs) of specific antibodies (Abs) unknown, utilizing wet protein arrays fabricated from in vitro human proteome. Controls included SSc patients with already-known SSc-specific autoantibodies, patients with other connective tissue diseases, and healthy subjects. The selection of nucleolar antigens was performed by database search in the Human Protein Atlas. The Presence of autoantibodies was certified by immunoblots and immunoprecipitations. Indirect immunofluorescence assays on HEp-2 cells were also conducted. Clinical assessment was conducted by retrospective review of electric medical records. RESULTS: PWAS identified three candidate autoantibodies, including anti-nuclear valosin-containing protein-like (NVL) Ab. Additional measurements in disease controls revealed that only anti-NVL Abs are exclusively detected in SSc. Detection of anti-NVL Abs was reproduced by conventional assays such as immunoblotting and immunoprecipitation. Indirect immunofluorescence assays demonstrated homogeneous nucleolar patterns. Anti-NVL Ab-positive cases were characterized by significantly low prevalence of diffuse skin sclerosis and interstitial lung disease, compared with SSc cases with NUC-ANAs other than anti-NVL Abs, such as anti-U3-RNP and anti-Th/To Abs. CONCLUSION: Anti-NVL Ab is an SSc-specific autoantibody associated with a unique combination of clinical features, including limited skin sclerosis and lack of lung involvement.

7.
Cancer Immunol Immunother ; 72(1): 235-247, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35831618

RESUMO

Autoantibody (AAb) has a prominent role in prostate cancer (PCa), with few studies profiling the AAb landscape in Chinese patients. Therefore, the AAb landscape in Chinese patients was characterized using protein arrays. First, in the discovery phase, Huprot arrays outlined autoimmune profiles against ~ 21,888 proteins from 57 samples. In the verification phase, the PCa-focused arrays detected 25 AAbs selected from the discovery phase within 178 samples. Then, PCa was detected using a backpropagation artificial neural network (BPANN) model. In the validation phase, an enzyme-linked immunosorbent assay (ELISA) was used to validate four AAb biomarkers from 196 samples. Huprot arrays profiled distinct PCa, benign prostate diseases (BPD), and health AAb landscapes. PCa-focused array depicted that IFIT5 and CPOX AAbs could distinguish PCa from health with an area under curve (AUC) of 0.71 and 0.70, respectively. PAH and FCER2 AAbs had AUCs of 0.86 and 0.88 in discriminating PCa from BPD. Particularly, PAH AAb detected patients in the prostate-specific antigen (PSA) gray zone with an AUC of 0.86. Meanwhile, the BPANN model of 4-AAb (IFIT5, PAH, FCER2, CPOX) panel attained AUC of 0.83 among the two cohorts for detecting patients with gray-zone PSA. In the validation cohort, the IFIT5 AAb was upregulated in PCa compared to health (p < 0.001). Compared with BPD, PAH and FCER2 AAbs were significantly elevated in PCa (p = 0.012 and 0.039). We have demonstrated the first extensive profiling of autoantibodies in Chinese PCa patients, identifying novel diagnostic AAb biomarkers, especially for identification of gray-zone-PSA patients.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Autoanticorpos , Análise Serial de Proteínas , População do Leste Asiático , Biomarcadores Tumorais , Neoplasias da Próstata/diagnóstico
8.
J Autoimmun ; 135: 102995, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724643

RESUMO

Cutaneous arteritis (CA) is a single-organ vasculitis that exclusively affects the small to medium-sized arteries of the skin. Diagnosis depends on a histological investigation with skin biopsy, which could be burdensome for both patients and clinicians. Moreover, the pathogenesis of CA remains unstudied, and treatment has not yet been established. Herein, we applied our proteome-wide autoantibody screening method to explore autoantibodies in the serum of CA patients. As a result, anti-transcobalamin receptor (TCblR) antibodies (Abs) were specifically detected in 24% of CA patients. Patients with positive anti-TCblR Abs were spared from peripheral neuropathy compared to those with negative anti-TCblR Abs, showing characteristics as CA confined to the skin. In addition, we revealed that anti-TCblR Abs trigger the autocrine loop of interleukin-6 mediated by tripartite motif-containing protein 21 in human endothelial cells and induce periarterial inflammation in murine skin. Furthermore, we demonstrated that methylcobalamin, a ligand of TCblR, ameliorates inflammation caused by anti-TCblR Abs both in vitro and in vivo. Collectively, our investigation unveils the pathologic significance of anti-TCblR Abs in CA and their potential as a diagnostic marker and a pathophysiology-oriented therapeutic target.


Assuntos
Arterite , Transcobalaminas , Humanos , Animais , Camundongos , Transcobalaminas/metabolismo , Proteoma/metabolismo , Autoanticorpos/metabolismo , Células Endoteliais/metabolismo , Inflamação
9.
BMC Cancer ; 23(1): 356, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072777

RESUMO

Colorectal cancer (CRC) is the third most prevalent cancer in the world, yet the sensitivity and specificity of biomarkers for CRC diagnosis are insufficient. In the present study, we performed a protein microarray screening method to identify antibody markers for CRC. Inhibitor of growth family 1 (ING1) was identified as a candidate tumor antigen for CRC using protein microarrays (ProtoArray). Subsequent amplified luminescence proximity homogeneous assay-linked immunosorbent assay using recombinant ING1 protein showed that the serum levels of anti-ING1 antibodies were increased not only in patients with CRC but also in those with esophageal cancer (EC), gastric cancer (GC), breast cancer (BrC), and pancreatic cancer (PC) compared with those of healthy donors (HDs). Antibodies against the ING1 amino acids between 239 and 253 were present at significantly higher levels in patients with CRC than in those with EC, GC, BrC, or PC. Anti-ING1 antibody levels were significantly higher in the patients with CRC at any stages than in the HDs. Immunohistochemical staining revealed higher expression of ING1 protein in CRC cells than in the adjacent normal tissues. In luciferase reporter assays using a CRC cell line, ING1 augmented p53-mediated NOXA promoter activity but attenuated p53-stimulated Bax, p21, and PUMA promoter activities. Consequently, serum anti-ING1 antibodies can be used for sensitive and specific diagnoses of CRC.


Assuntos
Neoplasias Colorretais , Proteínas Supressoras de Tumor , Humanos , Proteína 1 Inibidora do Crescimento/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Autoanticorpos , Neoplasias Colorretais/diagnóstico
10.
J Neurooncol ; 163(2): 327-338, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37237151

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). METHODS: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and STS GBM samples was performed. RESULTS: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. CONCLUSION: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Sobreviventes
11.
Mol Cell Proteomics ; 20: 100094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33991687

RESUMO

Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.


Assuntos
Cardiomiopatias/metabolismo , Ataxia de Friedreich/metabolismo , Retinoides/metabolismo , Adolescente , Adulto , Idoso , Aldeído Oxirredutases/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteômica , Adulto Jovem , Frataxina
12.
Mikrochim Acta ; 190(5): 166, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010667

RESUMO

A high percentage of the population suffers from multiple food allergies justifying  the importance of reliable diagnostic methods. Single-analyte solutions based on the determination of specific immunoglobulins E (sIgE) are safe and fast but are generally time-consuming and expensive. Thus sustainable microanalytical methods that provide multianalyte profiling information are highly demanded. This work presents the in vitro biosensing of specific IgE levels based on a reversed-phase allergen array. The approach consists of optical biosensing supported by direct multiplex immunoassays and on-disc technology. It identifies 12 sIgE associated with food allergies in a single analysis with a low serum sample volume (25 µL). After processing captured images, specific signals for each target biomarker correlate to their concentration. The assay analytically performs well with 0.3 IU/mL and 0.41 IU/mL as the detection and quantification limits in serum, respectively. This novel method achieves excellent clinical specificity (100%) and high sensitivity (91.1%), considering the diagnosis obtained by clinical history and ImmunoCAP analysis. The results demonstrate that microanalytical systems based on allergen arrays can potentially diagnose multiple food allergies and are easily implemented in primary care laboratory settings.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Humanos , Hipersensibilidade Alimentar/diagnóstico , Imunoensaio/métodos , Análise em Microsséries , Imunoglobulina E
13.
Int J Mol Sci ; 24(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901779

RESUMO

High-throughput protein assays are crucial for modern diagnostics, drug discovery, proteomics, and other fields of biology and medicine. It allows simultaneous detection of hundreds of analytes and miniaturization of both fabrication and analytical procedures. Photonic crystal surface mode (PC SM) imaging is an effective alternative to surface plasmon resonance (SPR) imaging used in conventional gold-coated, label-free biosensors. PC SM imaging is advantageous as a quick, label-free, and reproducible technique for multiplexed analysis of biomolecular interactions. PC SM sensors are characterized by a longer signal propagation at the cost of a lower spatial resolution, which makes them more sensitive than classical SPR imaging sensors. We describe an approach for designing label-free protein biosensing assays employing PC SM imaging in the microfluidic mode. Label-free, real-time detection of PC SM imaging biosensors using two-dimensional imaging of binding events has been designed to study arrays of model proteins (antibodies, immunoglobulin G-binding proteins, serum proteins, and DNA repair proteins) at 96 points prepared by automated spotting. The data prove feasibility of simultaneous PC SM imaging of multiple protein interactions. The results pave the way to further develop PC SM imaging as an advanced label-free microfluidic assay for the multiplexed detection of protein interactions.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Anticorpos , Proteínas , Técnicas Analíticas Microfluídicas/métodos
14.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895021

RESUMO

ANCA-associated vasculitides (AAV) are rare autoimmune diseases causing inflammation and damage to small blood vessels. New autoantibody biomarkers are needed to improve the diagnosis and treatment of AAV patients. In this study, we aimed to profile the autoantibody repertoire of AAV patients using in-house developed antigen arrays to identify previously unreported antibodies linked to the disease per se, clinical subgroups, or clinical activity. A total of 1743 protein fragments representing 1561 unique proteins were screened in 229 serum samples collected from 137 AAV patients at presentation, remission, and relapse. Additionally, serum samples from healthy individuals and patients with other type of vasculitis and autoimmune-inflammatory conditions were included to evaluate the specificity of the autoantibodies identified in AAV. Autoreactivity against members of the kinesin protein family were identified in AAV patients, healthy volunteers, and disease controls. Anti-KIF4A antibodies were significantly more prevalent in AAV. We also observed possible associations between anti-kinesin antibodies and clinically relevant features within AAV patients. Further verification studies will be needed to confirm these findings.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Autoanticorpos , Humanos , Cinesinas , Biomarcadores , Proteínas/uso terapêutico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico
15.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982700

RESUMO

Systemic sclerosis (SSc) is a rare autoimmune systemic disease that leads to decreased survival and quality of life due to fibrosis, inflammation, and vascular damage in the skin and/or vital organs. Early diagnosis is crucial for clinical benefit in SSc patients. Our study aimed to identify autoantibodies in the plasma of SSc patients that are associated with fibrosis in SSc. Initially, we performed a proteome-wide screening on sample pools from SSc patients by untargeted autoantibody screening on a planar antigen array (including 42,000 antigens representing 18,000 unique proteins). The selection was complemented with proteins reported in the literature in the context of SSc. A targeted antigen bead array was then generated with protein fragments representing the selected proteins and used to screen 55 SSc plasma samples and 52 matched controls. We found eleven autoantibodies with a higher prevalence in SSc patients than in controls, eight of which bound to proteins associated with fibrosis. Combining these autoantibodies in a panel could lead to the subgrouping of SSc patients with fibrosis. Anti-Phosphatidylinositol-5-phosphate 4-kinase type 2 beta (PIP4K2B)- and anti-AKT Serine/Threonine Kinase 3 (AKT3)-antibodies should be further explored to confirm their association with skin and lung fibrosis in SSc patients.


Assuntos
Doenças Autoimunes , Fibrose Pulmonar , Escleroderma Sistêmico , Humanos , Autoanticorpos , Doenças Autoimunes/complicações , Fibrose , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fibrose Pulmonar/complicações , Qualidade de Vida , Escleroderma Sistêmico/complicações
16.
Genes Cells ; 26(3): 180-189, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33527666

RESUMO

TRA98 is a rat monoclonal antibody (mAb) which recognizes a specific antigen in the nuclei of germ cells. mAb TRA98 has been used to understand the mechanism of germ cell development and differentiation in many studies. In mice, the antigen recognized by mAb TRA98 or GCNA1 has been reported to be a GCNA gene product, but despite the demonstration of the immunoreactivity of this mAb in human testis and sperm in 1997, the antigen in humans remains unknown, as of date. To identify the human antigen recognized by mAb TRA98, a human comprehensive wet protein array was developed containing 19,446 proteins derived from human cDNAs. Using this array, it was found that the antigen of mAb TRA98 is not a GCNA gene product, but nuclear factor-κB activating protein (NKAP). In mice, mAb TRA98 recognized both the GCNA gene product and NKAP. Furthermore, conditional knockout of Nkap in mice revealed a phenotype of Sertoli cell-only syndrome. Although NKAP is a ubiquitously expressed protein, NKAP recognized by mAb TRA98 in mouse testis was SUMOylated. These results suggest that NKAP undergoes modifications, such as SUMOylation in the testis, and plays an important role in spermatogenesis.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos/metabolismo , Células Germinativas/metabolismo , Análise Serial de Proteínas , Animais , Humanos , Masculino , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Testículo/metabolismo
17.
Expert Rev Proteomics ; 19(2): 115-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35466854

RESUMO

INTRODUCTION: Drug resistance is the main barrier to achieving cancer cures with medical therapy. Cancer drug resistance occurs, in part, due to adaptation of the tumor and microenvironment to therapeutic stress at a proteomic level. Reverse-phase protein arrays (RPPA) are well suited to proteomic analysis of drug resistance due to high sample throughput, sensitive detection of phosphoproteins, and validation for a large number of critical cellular pathways. AREAS COVERED: This review summarizes contributions of RPPA to understanding and combating drug resistance. In particular, contributions of RPPA to understanding resistance to PARP inhibitors, BRAF inhibitors, immune checkpoint inhibitors, and breast cancer investigational therapies are discussed. Articles reviewed were identified by MEDLINE, Scopus, and Cochrane search for keywords 'proteomics,' 'reverse-phase protein array,' 'drug resistance,' 'PARP inhibitor,' 'BRAF inhibitor,' 'immune checkpoint inhibitor,' and 'I-SPY' spanning October 1, 1960 - October 1, 2021. EXPERT OPINION: Precision oncology has thus far failed to convert the armament of targeted therapies into durable responses for most patients, highlighting that genetic sequencing alone is insufficient to guide therapy selection and overcome drug resistance. Combined genomic and proteomic analyses paired with creative drug combinations and dosing strategies hold promise for maturing precision oncology into an era of improved patient outcomes.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Medicina de Precisão , Análise Serial de Proteínas , Inibidores de Proteínas Quinases , Proteômica , Proteínas Proto-Oncogênicas B-raf , Microambiente Tumoral
18.
Mol Cell Proteomics ; 19(6): 916-927, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303587

RESUMO

Protein microarrays are crucial tools in the study of proteins in an unbiased, high-throughput manner, as they allow for characterization of up to thousands of individually purified proteins in parallel. The adaptability of this technology has enabled its use in a wide variety of applications, including the study of proteome-wide molecular interactions, analysis of post-translational modifications, identification of novel drug targets, and examination of pathogen-host interactions. In addition, the technology has also been shown to be useful in profiling antibody specificity, as well as in the discovery of novel biomarkers, especially for autoimmune diseases and cancers. In this review, we will summarize the developments that have been made in protein microarray technology in both in basic and translational research over the past decade. We will also introduce a novel membrane protein array, the GPCR-VirD array, and discuss the future directions of functional protein microarrays.


Assuntos
Doenças Autoimunes/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Análise Serial de Proteínas/métodos , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Doenças Autoimunes/imunologia , Biomarcadores/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Neoplasias/imunologia , Processamento de Proteína Pós-Traducional , Proteômica , Pesquisa Translacional Biomédica , Vírion
19.
Mol Cell Proteomics ; 19(11): 1749-1759, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788344

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly contagious infection and threating the human lives in the world. The elevation of cytokines in blood is crucial to induce cytokine storm and immunosuppression in the transition of severity in COVID-19 patients. However, the comprehensive changes of serum proteins in COVID-19 patients throughout the SARS-CoV-2 infection is unknown. In this work, we developed a high-density antibody microarray and performed an in-depth proteomics analysis of serum samples collected from early COVID-19 (n = 15) and influenza (n = 13) patients. We identified a large set of differentially expressed proteins (n = 132) that participate in a landscape of inflammation and immune signaling related to the SARS-CoV-2 infection. Furthermore, the significant correlations of neutrophil and lymphocyte with the CCL2 and CXCL10 mediated cytokine signaling pathways was identified. These information are valuable for the understanding of COVID-19 pathogenesis, identification of biomarkers and development of the optimal anti-inflammation therapy.


Assuntos
Proteínas Sanguíneas/imunologia , Infecções por Coronavirus/imunologia , Tosse/imunologia , Síndrome da Liberação de Citocina/imunologia , Febre/imunologia , Cefaleia/imunologia , Influenza Humana/imunologia , Mialgia/imunologia , Pneumonia Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus/patogenicidade , Proteínas Sanguíneas/genética , COVID-19 , Criança , Infecções por Coronavirus/genética , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Tosse/genética , Tosse/fisiopatologia , Tosse/virologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/fisiopatologia , Síndrome da Liberação de Citocina/virologia , Citocinas/genética , Citocinas/imunologia , Feminino , Febre/genética , Febre/fisiopatologia , Febre/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Cefaleia/genética , Cefaleia/fisiopatologia , Cefaleia/virologia , Humanos , Influenza Humana/genética , Influenza Humana/fisiopatologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Mialgia/genética , Mialgia/fisiopatologia , Mialgia/virologia , Orthomyxoviridae/patogenicidade , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , Análise Serial de Proteínas , Proteoma/genética , Proteoma/imunologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , SARS-CoV-2 , Transdução de Sinais/imunologia
20.
Mol Cell Proteomics ; 19(3): 490-500, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31924693

RESUMO

Lung cancer (LC) remains the leading cause of mortality from malignant tumors worldwide. In our previous study, we surveyed both IgG and IgM-bound serological biomarkers and validated a panel of IgG-bound autoantigens for early LC diagnosis with 50% sensitivity at 90% specificity. To further improve the performance of these serological biomarkers, we surveyed HuProt arrays, comprised of 20,240 human proteins, for IgA-bound autoantigens because IgAs are a major immunoglobulin isotype in the lung. Integrating with IgG-bound autoantigens, we discovered and validated a combined biomarker panel using ELISA-format tests. Specifically, in Phase I, we obtained IgA-based autoimmune profiles of 69 early stage LC patients, 30 healthy subjects and 25 patients with lung benign lesions (LBL) on HuProt arrays and identified 28 proteins as candidate autoantigens that were significantly associated with early stage LC. In Phase II, we re-purified the autoantigens and converted them into an ELISA-format testing to profile an additional large cohort, comprised of 136 early stage LC patients, 58 healthy individuals, and 29 LBL patients. Integration of IgG autoimmune profiles allowed us to identify and validate a biomarker panel of three IgA autoantigens (i.e. BCL7A, and TRIM33 and MTERF4) and three IgG autoantigens (i.e. CTAG1A, DDX4 and MAGEC2) for diagnosis of early stage LC with 73.5% sensitivity at >85% specificity. In Phase III, the performance of this biomarker panel was confirmed with an independent cohort, comprised of 88 early stage LC patients, 18 LBL patients, and 36 healthy subjects. Finally, a blind test on 178 serum samples was conducted to confirm the performance of the biomarker panel. In summary, this study demonstrates for the first time that an integrated panel of IgA/IgG autoantigens can serve as valuable biomarkers to further improve the performance of early diagnosis of LC.


Assuntos
Autoantígenos/imunologia , Biomarcadores Tumorais/imunologia , Detecção Precoce de Câncer , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Neoplasias Pulmonares/diagnóstico , Idoso , Biomarcadores Tumorais/sangue , Feminino , Humanos , Pulmão/imunologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA