Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267907

RESUMO

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Assuntos
Comunicação Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transdução de Sinais
2.
Trends Biochem Sci ; 48(6): 527-538, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061423

RESUMO

Protein-protein interactions (PPIs) drive biological processes, and disruption of PPIs can cause disease. With recent breakthroughs in structure prediction and a deluge of genomic sequence data, computational methods to predict PPIs and model spatial structures of protein complexes are now approaching the accuracy of experimental approaches for permanent interactions and show promise for elucidating transient interactions. As we describe here, the key to this success is rich evolutionary information deciphered from thousands of homologous sequences that coevolve in interacting partners. This covariation signal, revealed by sophisticated statistical and machine learning (ML) algorithms, predicts physiological interactions. Accurate artificial intelligence (AI)-based modeling of protein structures promises to provide accurate 3D models of PPIs at a proteome-wide scale.


Assuntos
Inteligência Artificial , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Aprendizado de Máquina , Proteoma , Biologia Computacional/métodos
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38609330

RESUMO

Understanding the protein structures is invaluable in various biomedical applications, such as vaccine development. Protein structure model building from experimental electron density maps is a time-consuming and labor-intensive task. To address the challenge, machine learning approaches have been proposed to automate this process. Currently, the majority of the experimental maps in the database lack atomic resolution features, making it challenging for machine learning-based methods to precisely determine protein structures from cryogenic electron microscopy density maps. On the other hand, protein structure prediction methods, such as AlphaFold2, leverage evolutionary information from protein sequences and have recently achieved groundbreaking accuracy. However, these methods often require manual refinement, which is labor intensive and time consuming. In this study, we present DeepTracer-Refine, an automated method that refines AlphaFold predicted structures by aligning them to DeepTracers modeled structure. Our method was evaluated on 39 multi-domain proteins and we improved the average residue coverage from 78.2 to 90.0% and average local Distance Difference Test score from 0.67 to 0.71. We also compared DeepTracer-Refine with Phenixs AlphaFold refinement and demonstrated that our method not only performs better when the initial AlphaFold model is less precise but also surpasses Phenix in run-time performance.


Assuntos
Evolução Biológica , Aprendizado de Máquina , Microscopia Crioeletrônica , Sequência de Aminoácidos , Bases de Dados Factuais
4.
J Biol Chem ; 300(8): 107575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013537

RESUMO

Adaptation to the shortage in free amino acids (AA) is mediated by 2 pathways, the integrated stress response (ISR) and the mechanistic target of rapamycin (mTOR). In response to reduced levels, primarily of leucine or arginine, mTOR in its complex 1 configuration (mTORC1) is suppressed leading to a decrease in translation initiation and elongation. The eIF2α kinase general control nonderepressible 2 (GCN2) is activated by uncharged tRNAs, leading to induction of the ISR in response to a broader range of AA shortage. ISR confers a reduced translation initiation, while promoting the selective synthesis of stress proteins, such as ATF4. To efficiently adapt to AA starvation, the 2 pathways are cross-regulated at multiple levels. Here we identified a new mechanism of ISR/mTORC1 crosstalk that optimizes survival under AA starvation, when mTORC1 is forced to remain active. mTORC1 activation during acute AA shortage, augmented ATF4 expression in a GCN2-dependent manner. Under these conditions, enhanced GCN2 activity was not dependent on tRNA sensing, inferring a different activation mechanism. We identified a labile physical interaction between GCN2 and mTOR that results in a phosphorylation of GCN2 on serine 230 by mTOR, which promotes GCN2 activity. When examined under prolonged AA starvation, GCN2 phosphorylation by mTOR promoted survival. Our data unveils an adaptive mechanism to AA starvation, when mTORC1 evades inhibition.


Assuntos
Fator 4 Ativador da Transcrição , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Serina-Treonina Quinases , Estresse Fisiológico , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Fosforilação , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Animais , Camundongos , Aminoácidos/metabolismo , Adaptação Fisiológica , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , RNA de Transferência/metabolismo , RNA de Transferência/genética , Células HEK293
5.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833840

RESUMO

For refining and designing protein structures, it is essential to have an efficient protein folding and docking framework that generates a protein 3D structure based on given constraints. In this study, we introduce OPUS-Fold3 as a gradient-based, all-atom protein folding and docking framework, which accurately generates 3D protein structures in compliance with specified constraints, such as a potential function as long as it can be expressed as a function of positions of heavy atoms. Our tests show that, for example, OPUS-Fold3 achieves performance comparable to pyRosetta in backbone folding and significantly better in side-chain modeling. Developed using Python and TensorFlow 2.4, OPUS-Fold3 is user-friendly for any source-code level modifications and can be seamlessly combined with other deep learning models, thus facilitating collaboration between the biology and AI communities. The source code of OPUS-Fold3 can be downloaded from http://github.com/OPUS-MaLab/opus_fold3. It is freely available for academic usage.


Assuntos
Proteínas , Software , Modelos Moleculares , Proteínas/química , Dobramento de Proteína
6.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37350526

RESUMO

Neurodegenerative diseases (NDs) usually connect with aggregation and molecular interactions of pathological proteins. The integration of accumulative data from clinical and biomedical research will allow for the excavation of pathological proteins and related interactors. It is also important to systematically study their interacting proteins in order to find more related proteins and potential therapeutic targets. Understanding binding regions in protein interactions will help functional proteomics and provide an alternative method for predicting novel interactions. This study integrated data from biomedical research to achieve systematic mining and analysis of pathogenic proteins and their interaction network. A workflow has been built as a solution for the collective information of proteins involved in NDs, related protein-protein interactions (PPIs) and interactive visualizations. It also included protein isoforms and mapped them in a disease-related PPI network to illuminate the impact of alternative splicing on protein binding. The interacting proteins enriched by diseases and biological processes (BPs) revealed possible regulatory modules. A high-resolution network with structural affinity information was generated. Finally, Neurodegenerative Disease Atlas (NDAtlas) was constructed with an interactive and intuitive view of protein docking with 3D molecular graphics beyond the traditional 2D network. NDAtlas is available at http://bis.zju.edu.cn/ndatlas.


Assuntos
Doenças Neurodegenerativas , Mapeamento de Interação de Proteínas , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Doenças Neurodegenerativas/genética , Bases de Dados de Proteínas , Isoformas de Proteínas/genética , Mapas de Interação de Proteínas
7.
Bioinformatics ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348157

RESUMO

MOTIVATION: Antibody-antigen complex modelling is an important step in computational workflows for therapeutic antibody design. While experimentally determined structures of both antibody and the cognate antigen are often not available, recent advances in machine learning-driven protein modelling have enabled accurate prediction of both antibody and antigen structures. Here, we analyse the ability of protein-protein docking tools to use machine learning generated input structures for information-driven docking. RESULTS: In an information-driven scenario, we find that HADDOCK can generate accurate models of antibody-antigen complexes using an ensemble of antibody structures generated by machine learning tools and AlphaFold2 predicted antigen structures. Targeted docking using knowledge of the complementary determining regions on the antibody and some information about the targeted epitope allows the generation of high quality models of the complex with reduced sampling, resulting in a computationally cheap protocol that outperforms the ZDOCK baseline. AVAILABILITY: The source code of HADDOCK3 is freely available at github.com/haddocking/haddock3. The code to generate and analyse the data is available at github.com/haddocking/ai-antibodies. The full runs, including docking models from all modules of a workflow have been deposited in our lab collection (data.sbgrid.org/labs/32/1139) at the SBGRID data repository. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35959990

RESUMO

Protein side chains are vitally important to many biological processes such as protein-protein interaction. In this study, we evaluate the performance of our previous released side-chain modeling method OPUS-Mut, together with some other methods, on three oligomer datasets, CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21). The results show that OPUS-Mut outperforms other methods measured by all residues or by the interfacial residues. We also demonstrate our method on evaluating protein-protein docking pose on a dataset Oligomer-Dock (75) created using the top 10 predictions from ZDOCK 3.0.2. Our scoring function correctly identifies the native pose as the top-1 in 45 out of 75 targets. Different from traditional scoring functions, our method is based on the overall side-chain packing favorableness in accordance with the local packing environment. It emphasizes the significance of side chains and provides a new and effective scoring term for studying protein-protein interaction.


Assuntos
Proteínas , Software , Algoritmos , Ligação Proteica , Conformação Proteica , Proteínas/química
9.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35945135

RESUMO

In the development of targeted drugs, anticancer peptides (ACPs) have attracted great attention because of their high selectivity, low toxicity and minimal non-specificity. In this work, we report a framework of ACPs generation, which combines Wasserstein autoencoder (WAE) generative model and Particle Swarm Optimization (PSO) forward search algorithm guided by attribute predictive model to generate ACPs with desired properties. It is well known that generative models based on Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN) are difficult to be used for de novo design due to the problems of posterior collapse and difficult convergence of training. Our WAE-based generative model trains more successfully (lower perplexity and reconstruction loss) than both VAE and GAN-based generative models, and the semantic connections in the latent space of WAE accelerate the process of forward controlled generation of PSO, while VAE fails to capture this feature. Finally, we validated our pipeline on breast cancer targets (HIF-1) and lung cancer targets (VEGR, ErbB2), respectively. By peptide-protein docking, we found candidate compounds with the same binding sites as the peptides carried in the crystal structure but with higher binding affinity and novel structures, which may be potent antagonists that interfere with these target-mediated signaling.


Assuntos
Neoplasias da Mama , Algoritmos , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Pulmão , Peptídeos , Proteínas
10.
Mol Pharm ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251364

RESUMO

Parkinson's disease (PD) is an idiopathic neurodegenerative disorder with the second-highest prevalence rate behind Alzheimer's disease. The pathophysiological hallmarks of PD are both degeneration of dopaminergic neurons in the substantia nigra pars compacta and the inclusion of misfolded α-synuclein (α-syn) aggregates known as Lewy bodies. Despite decades of research for potential PD treatments, none have been developed, and developing new therapeutic agents is a time-consuming and expensive process. Computational methods can be used to investigate the properties of drug candidates currently undergoing clinical trials to determine their theoretical efficiency at targeting α-syn. Monoclonal antibodies (mAbs) are biological drugs with high specificity, and Prasinezumab (PRX002) is an mAb currently in Phase II, which targets the C-terminus (AA 118-126) of α-syn. We utilized BioLuminate and PyMol for the structure prediction and preparation of the fragment antigen-binding (Fab) region of PRX002 and 34 different conformations of α-syn. Protein-protein docking simulations were performed using PIPER, and 3 of the docking poses were selected based on the best fit. Molecular dynamics simulations were conducted on the docked protein structures in triplicate for 1000 ns, and hydrogen bonds and electrostatic and hydrophobic interactions were analyzed using MDAnalysis to determine which residues were interacting and how often. Hydrogen bonds were shown to form frequently between the HCDR2 region of PRX002 and α-syn. Free energy was calculated to determine the binding affinity. The predicted binding affinity shows a strong antibody-antigen attraction between PRX002 and α-syn. RMSD was calculated to determine the conformational change of these regions throughout the simulation. The mAb's developability was determined using computational screening methods. Our results demonstrate the efficiency and developability of this therapeutic agent.

11.
Fish Shellfish Immunol ; 149: 109561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636738

RESUMO

Toll-interacting protein (Tollip) serves as a crucial inhibitory factor in the modulation of Toll-like receptor (TLR)-mediated innate immunological responses. The structure and function of Tollip have been well documented in mammals, yet the information in teleost remained limited. This work employed in vitro overexpression and RNA interference in vivo and in vitro to comprehensively examine the regulatory effects of AjTollip on NF-κB and MAPK signaling pathways. The levels of p65, c-Fos, c-Jun, IL-1, IL-6, and TNF-α were dramatically reduced following overexpression of AjTollip, whereas knocking down AjTollip in vivo and in vitro enhanced those genes' expression. Protein molecular docking simulations showed AjTollip interacts with AjTLR2, AjIRAK4a, and AjIRAK4b. A better understanding of the transcriptional regulation of AjTollip is crucial to elucidating the role of Tollip in fish antibacterial response. Herein, we cloned and characterized a 2.2 kb AjTollip gene promoter sequence. The transcription factors GATA1 and Sp1 were determined to be associated with the activation of AjTollip expression by using promoter truncation and targeted mutagenesis techniques. Collectively, our results indicate that AjTollip suppresses the NF-κB and MAPK signaling pathways, leading to the decreased expression of the downstream inflammatory factors, and GATA1 and Sp1 play a vital role in regulating AjTollip expression.


Assuntos
Anguilla , Proteínas de Peixes , Fator de Transcrição GATA1 , NF-kappa B , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Anguilla/genética , Anguilla/imunologia , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Transdução de Sinais
12.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727866

RESUMO

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Assuntos
Vírus da Influenza A , Proteínas de Transporte da Membrana Mitocondrial , Replicação Viral , Humanos , Regulação para Baixo , Células HEK293 , Células HeLa , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
13.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542527

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is a plasmatic protein that plays a crucial role in lipoprotein metabolism by inhibiting the lipoprotein lipase (LPL) and the endothelial lipase (EL) responsible for the hydrolysis of phospholipids on high-density lipoprotein (HDL). Interest in developing new pharmacological therapies aimed at inhibiting ANGPTL3 has been growing due to the hypolipidemic and antiatherogenic profile observed in its absence. The goal of this study was the in silico characterization of the interaction between ANGPTL3 and EL. Because of the lack of any structural information on both the trimeric coiled-coil N-terminal domain of ANGPTL3 and the EL homodimer as well as data regarding their interactions, the first step was to obtain the three-dimensional model of these two proteins. The models were then refined via molecular dynamics (MD) simulations and used to investigate the interaction mechanism. The analysis of interactions in different docking poses and their refinement via MD allowed the identification of three specific glutamates of ANGPTL3 that recognize a positively charged patch on the surface of EL. These ANGPTL3 key residues, i.e., Glu154, Glu157, and Glu160, could form a putative molecular recognition site for EL. This study paves the way for future investigations aimed at confirming the recognition site and at designing novel inhibitors of ANGPTL3.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Lipase , Proteínas Semelhantes a Angiopoietina , Lipase/metabolismo , Lipase Lipoproteica/metabolismo , Lipoproteínas HDL/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos , Angiopoietinas/metabolismo
14.
Proteomics ; 23(17): e2300219, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37667816

RESUMO

Structural characterization of protein interactions is essential for our ability to understand and modulate physiological processes. Computational approaches to modeling of protein complexes provide structural information that far exceeds capabilities of the existing experimental techniques. Protein structure prediction in general, and prediction of protein interactions in particular, has been revolutionized by the rapid progress in Deep Learning techniques. The work of Schweke et al. (Proteomics 2023, 23, 2200323) presents a community-wide study of an important problem of distinguishing physiological protein-protein complexes/interfaces (experimentally determined or modeled) from non-physiological ones. The authors designed and generated a large benchmark set of physiological and non-physiological homodimeric complexes, and evaluated a large set of scoring functions, as well as AlphaFold predictions, on their ability to discriminate the non-physiological interfaces. The problem of separating physiological interfaces from non-physiological ones is very difficult, largely due to the lack of a clear distinction between the two categories in a crowded environment inside a living cell. Still, the ability to identify key physiologically significant interfaces in the variety of possible configurations of a protein-protein complex is important. The study presents a major data resource and methodological development in this important direction for molecular and cellular biology.


Assuntos
Benchmarking , Proteômica
15.
Proteins ; 91(2): 171-182, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088633

RESUMO

Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.


Assuntos
Anticorpos , Antígenos , Epitopos/metabolismo , Anticorpos/química , Antígenos/química , Simulação de Dinâmica Molecular , Proteínas/química , Ligação Proteica
16.
Proteins ; 91(4): 532-541, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36416087

RESUMO

Styrene is a nonpolar organic compound used in very high volume for the industrial scale production of commercially important polymers such as polystyrene resins as well as copolymers like acrylonitrile butadiene styrene, latex, and rubber. These resins are widely used in the manufacturing of various products including single-use plastics such as disposable cups and containers, protective packaging, heat insulation, and so forth. The large-scale utilization leads to the over-accumulation of styrene waste in the environment causing deleterious health risks including cancer, neurological impairment, dysbiosis of central nervous system, and respiratory problems. To eliminate the accumulating waste. Microbial enzyme-based system represents the most environmental friendly and sustainable approach for elimination of styrene waste. However, comprehensive understanding of the enzyme-substrate interaction and associated pathways would be crucial for developing large-scale disposal systems. This study aims to understand the molecular interaction between the protein-ligand complexes of the styrene catabolic reactions by bacterial enzymes of sty operon. Molecular docking analysis for catalytic enzymes namely, styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase (PAD) of the bacterial sty operon was carried out with their individual substrates, that is, styrene, styrene oxide, and phenylacetic acid, respectively. The binding energy, amino acids forming binding cavity, and binding interactions between the protein-ligand binding sites were calculated for each case. The obtained binding energies showed a stable association of these complexes indicating the future scope of their utilization for large-scale bioremediation of styrene, and its commercially used polymers and copolymers.


Assuntos
Bactérias , Poliestirenos , Ligantes , Simulação de Acoplamento Molecular , Polímeros/química
17.
Proteins ; 91(7): 872-889, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36729043

RESUMO

Voltage-gated ion channels play essential physiological roles in action potential generation and propagation. Peptidic toxins from animal venoms target ion channels and provide useful scaffolds for the rational design of novel channel modulators with enhanced potency and subtype selectivity. Despite recent progress in obtaining experimental structures of peptide toxin-ion channel complexes, structural determination of peptide toxins bound to ion channels in physiologically important states remains challenging. Here we describe an application of RosettaDock approach to the structural modeling of peptide toxins interactions with ion channels. We tested this approach on 10 structures of peptide toxin-ion channel complexes and demonstrated that it can sample near-native structures in all tested cases. Our approach will be useful for improving the understanding of the molecular mechanism of natural peptide toxin modulation of ion channel gating and for the structural modeling of novel peptide-based ion channel modulators.


Assuntos
Peptídeos , Venenos de Aranha , Animais , Canais Iônicos , Ativação do Canal Iônico/fisiologia , Venenos de Aranha/química
18.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876197

RESUMO

The design of therapeutic antibodies has attracted a large amount of attention over the years. Antibodies are widely used to treat many diseases due to their high efficiency and low risk of adverse events. However, the experimental methods of antibody design are time-consuming and expensive. Although computational antibody design techniques have had significant advances in the past years, there are still some challenges that need to be solved, such as the flexibility of antigen structure, the lack of antibody structural data and the absence of standard antibody design protocol. In the present work, we elaborated on an in silico antibody design protocol for users to easily perform computer-aided antibody design. First, the Rosetta web server will be applied to generate the 3D structure of query antibodies if there is no structural information available. Then, two-step docking will be used to identify the binding pose of an antibody-antigen complex when the binding information is unknown. ClusPro is the first method to be used to conduct the global docking, and SnugDock is applied for the local docking. Sequentially, based on the predicted binding poses, in silico alanine scanning will be used to predict the potential hotspots (or key residues). Finally, computational affinity maturation protocol will be used to modify the structure of antibodies to theoretically increase their affinity and stability, which will be further validated by the bioassays in the future. As a proof of concept, we redesigned antibody D44.1 and compared it with previously reported data in order to validate IsAb protocol. To further illustrate our proposed protocol, we used cemiplimab antibody, a PD-1 checkpoint inhibitor, as an example to showcase a step-by-step tutorial.


Assuntos
Anticorpos/química , Complexo Antígeno-Anticorpo/química , Biologia Computacional/métodos , Desenho Assistido por Computador , Simulação de Acoplamento Molecular , Domínios Proteicos , Animais , Anticorpos/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/metabolismo , Sítios de Ligação de Anticorpos , Simulação por Computador , Cristalografia por Raios X , Humanos , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica
19.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33959764

RESUMO

Diseases caused by bacterial infections become a critical problem in public heath. Antibiotic, the traditional treatment, gradually loses their effectiveness due to the resistance. Meanwhile, antibacterial proteins attract more attention because of broad spectrum and little harm to host cells. Therefore, exploring new effective antibacterial proteins is urgent and necessary. In this paper, we are committed to evaluating the effectiveness of ab-initio docking methods in antibacterial protein-protein docking. For this purpose, we constructed a three-dimensional (3D) structure dataset of antibacterial protein complex, called APCset, which contained $19$ protein complexes whose receptors or ligands are homologous to antibacterial peptides from Antimicrobial Peptide Database. Then we selected five representative ab-initio protein-protein docking tools including ZDOCK3.0.2, FRODOCK3.0, ATTRACT, PatchDock and Rosetta to identify these complexes' structure, whose performance differences were obtained by analyzing from five aspects, including top/best pose, first hit, success rate, average hit count and running time. Finally, according to different requirements, we assessed and recommended relatively efficient protein-protein docking tools. In terms of computational efficiency and performance, ZDOCK was more suitable as preferred computational tool, with average running time of $6.144$ minutes, average Fnat of best pose of $0.953$ and average rank of best pose of $4.158$. Meanwhile, ZDOCK still yielded better performance on Benchmark 5.0, which proved ZDOCK was effective in performing docking on large-scale dataset. Our survey can offer insights into the research on the treatment of bacterial infections by utilizing the appropriate docking methods.


Assuntos
Algoritmos , Peptídeos Antimicrobianos/química , Biologia Computacional , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Software
20.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33693482

RESUMO

Protein-protein interactions play a fundamental role in all cellular processes. Therefore, determining the structure of protein-protein complexes is crucial to understand their molecular mechanisms and develop drugs targeting the protein-protein interactions. Recently, deep learning has led to a breakthrough in intra-protein contact prediction, achieving an unusual high accuracy in recent Critical Assessment of protein Structure Prediction (CASP) structure prediction challenges. However, due to the limited number of known homologous protein-protein interactions and the challenge to generate joint multiple sequence alignments of two interacting proteins, the advances in inter-protein contact prediction remain limited. Here, we have proposed a deep learning model to predict inter-protein residue-residue contacts across homo-oligomeric protein interfaces, named as DeepHomo. Unlike previous deep learning approaches, we integrated intra-protein distance map and inter-protein docking pattern, in addition to evolutionary coupling, sequence conservation, and physico-chemical information of monomers. DeepHomo was extensively tested on both experimentally determined structures and realistic CASP-Critical Assessment of Predicted Interaction (CAPRI) targets. It was shown that DeepHomo achieved a high precision of >60% for the top predicted contact and outperformed state-of-the-art direct-coupling analysis and machine learning-based approaches. Integrating predicted inter-chain contacts into protein-protein docking significantly improved the docking accuracy on the benchmark dataset of realistic homo-dimeric targets from CASP-CAPRI experiments. DeepHomo is available at http://huanglab.phys.hust.edu.cn/DeepHomo/.


Assuntos
Aprendizado Profundo , Simulação de Acoplamento Molecular , Proteínas/metabolismo , Software , Sítios de Ligação , Conjuntos de Dados como Assunto , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA