Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552737

RESUMO

Focal adhesions (FAs) form the junction between extracellular matrix (ECM)-bound integrins and the actin cytoskeleton and also transmit signals that regulate cell adhesion, cytoskeletal dynamics, and cell migration. While many of these signals are rooted in reversible tyrosine phosphorylation, phosphorylation of FA proteins on Ser/Thr residues is far more abundant yet its mechanisms and consequences are far less understood. The cAMP-dependent protein kinase (protein kinase A; PKA) has important roles in cell adhesion and cell migration and is both an effector and regulator of integrin-mediated adhesion to the ECM. Importantly, subcellular localization plays a critically important role in specifying PKA function. Here, we show that PKA is present in isolated FA-cytoskeleton complexes and active within FAs in live cells. Furthermore, using kinase-catalyzed biotinylation of isolated FA-cytoskeleton complexes, we identify 53 high-stringency candidate PKA substrates within FAs. From this list, we validate tensin-3 (Tns3)-a well-established molecular scaffold, regulator of cell migration, and a component of focal and fibrillar adhesions-as a novel direct substrate for PKA. These observations identify a new pathway for phospho-regulation of Tns3 and, importantly, establish a new and important niche for localized PKA signaling and thus provide a foundation for further investigation of the role of PKA in the regulation of FA dynamics and signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Adesões Focais , Tensinas , Animais , Humanos , Adesão Celular , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Adesões Focais/enzimologia , Fosforilação , Tensinas/metabolismo , Camundongos , Ratos , Linhagem Celular , Transdução de Sinais/genética
2.
J Biol Chem ; 300(3): 105725, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325743

RESUMO

The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.


Assuntos
Proteínas 14-3-3 , 3',5'-AMP Cíclico Fosfodiesterases , Proteínas Quinases Dependentes de AMP Cíclico , Sistema de Sinalização das MAP Quinases , Humanos , Proteínas 14-3-3/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Fosfosserina/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo
3.
J Biol Chem ; 300(8): 107551, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002671

RESUMO

Isoforms of microtubule-associated protein 2 (MAP2) differ from their homolog Tau in the sequence and interactions of the N-terminal region. Binding of the N-terminal region of MAP2c (N-MAP2c) to the dimerization/docking domains of the regulatory subunit RIIα of cAMP-dependent protein kinase (RIIDD2) and to the Src-homology domain 2 (SH2) of growth factor receptor-bound protein 2 (Grb2) have been described long time ago. However, the structural features of the complexes remained unknown due to the disordered nature of MAP2. Here, we provide structural description of the complexes. We have solved solution structure of N-MAP2c in complex with RIIDD2, confirming formation of an amphiphilic α-helix of MAP2c upon binding, defining orientation of the α-helix in the complex and showing that its binding register differs from previous predictions. Using chemical shift mapping, we characterized the binding interface of SH2-Grb2 and rat MAP2c phosphorylated by the tyrosine kinase Fyn in their complex and proposed a model explaining differences between SH2-Grb2 complexes with rat MAP2c and phosphopeptides with a Grb2-specific sequence. The results provide the structural basis of a potential role of MAP2 in regulating cAMP-dependent phosphorylation cascade via interactions with RIIDD2 and Ras signaling pathway via interactions with SH2-Grb2.

4.
J Biol Chem ; 300(1): 105497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016514

RESUMO

For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.


Assuntos
Membrana Celular , AMP Cíclico , Transdução de Sinais , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Núcleo Celular/metabolismo
5.
Brain ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743596

RESUMO

Protein Kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer to two catalytic (C) subunits. Recently, the L50R variant in the gene encoding the RIß subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIß-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined postmortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry, and behavioral assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIß is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIß-L50R mouse model. We define RIß-L50R as a causal mutation driving an age-dependent behavioral and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIß dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the C-subunit protects the RIß-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIß-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.

6.
Proc Natl Acad Sci U S A ; 119(25): e2121867119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696587

RESUMO

Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the ß-adrenergic receptor (ß-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes ß-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the ß-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Proteína de Ligação a Fosfatidiletanolamina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Humanos , Masculino , Células PC-3 , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosforilação , Neoplasias da Próstata/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais
7.
J Mol Cell Cardiol ; 186: 125-137, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008210

RESUMO

N-terminal cardiac myosin-binding protein C (cMyBP-C) domains (C0-C2) bind to thick (myosin) and thin (actin) filaments to coordinate contraction and relaxation of the heart. These interactions are regulated by phosphorylation of the M-domain situated between domains C1 and C2. In cardiomyopathies and heart failure, phosphorylation of cMyBP-C is significantly altered. We aimed to investigate how cMyBP-C interacts with myosin and actin. We developed complementary, high-throughput, C0-C2 FRET-based binding assays for myosin and actin to characterize the effects due to 5 HCM-linked variants or functional mutations in unphosphorylated and phosphorylated C0-C2. The assays indicated that phosphorylation decreases binding to both myosin and actin, whereas the HCM mutations in M-domain generally increase binding. The effects of mutations were greatest in phosphorylated C0-C2, and some mutations had a larger effect on actin than myosin binding. Phosphorylation also altered the spatial relationship of the probes on C0-C2 and actin. The magnitude of these structural changes was dependent on C0-C2 probe location (C0, C1, or M-domain). We conclude that binding can differ between myosin and actin due to phosphorylation or mutations. Additionally, these variables can change the mode of binding, affecting which of the interactions in cMyBP-C N-terminal domains with myosin or actin take place. The opposite effects of phosphorylation and M-domain mutations is consistent with the idea that cMyBP-C phosphorylation is critical for normal cardiac function. The precision of these assays is indicative of their usefulness in high-throughput screening of drug libraries for targeting cMyBP-C as therapy.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas de Transporte , Actinas/metabolismo , Fosforilação , Citoesqueleto de Actina/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutação
8.
J Biol Chem ; 299(6): 104790, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37150322

RESUMO

Cyclic-nucleotide binding (CNB) domains are structurally and evolutionarily conserved signaling modules that regulate proteins with diverse folds and functions. Despite a wealth of structural information, the mechanisms by which CNB domains couple cyclic-nucleotide binding to conformational changes involved in signal transduction remain unknown. Here we combined single-molecule and computational approaches to investigate the conformation and folding energetics of the two CNB domains of the regulatory subunit of protein kinase A (PKA). We found that the CNB domains exhibit different conformational and folding signatures in the apo state, when bound to cAMP, or when bound to the PKA catalytic subunit, underscoring their ability to adapt to different binding partners. Moreover, we show while the two CNB domains have near-identical structures, their thermodynamic coupling signatures are divergent, leading to distinct cAMP responses and differential mutational effects. Specifically, we demonstrate mutation W260A exerts local and allosteric effects that impact multiple steps of the PKA activation cycle. Taken together, these results highlight the complex interplay between folding energetics, conformational dynamics, and thermodynamic signatures that underlies structurally conserved signaling modules in response to ligand binding and mutational effects.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Modelos Moleculares , Dobramento de Proteína , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Termodinâmica , Domínios Proteicos
9.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865311

RESUMO

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Insuficiência Cardíaca , Miofibrilas , Bibliotecas de Moléculas Pequenas , Humanos , Actinas/metabolismo , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Miofibrilas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Técnicas Biossensoriais , Adenosina Trifosfatases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência
10.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732081

RESUMO

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Assuntos
Plaquetas , Flavonoides , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apigenina/farmacologia , Quercetina/farmacologia , Luteolina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quempferóis/farmacologia , Trombina/metabolismo , Flavanonas
11.
Cell Commun Signal ; 21(1): 102, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158967

RESUMO

BACKGROUND: Chronic hepatitis C virus (HCV) infection causes hepatocellular carcinoma (HCC). The HCC risk, while decreased compared with active HCV infection, persists in HCV-cured patients by direct-acting antiviral agents (DAA). We previously demonstrated that Wnt/ß-catenin signaling remained activated after DAA-mediated HCV eradication. Developing therapeutic strategies to both eradicate HCV and reverse Wnt/ß-catenin signaling is needed. METHODS: Cell-based HCV long term infection was established. Chronically HCV infected cells were treated with DAA, protein kinase A (PKA) inhibitor H89 and endoplasmic reticulum (ER) stress inhibitor tauroursodeoxycholic acid (TUDCA). Western blotting analysis and fluorescence microscopy were performed to determine HCV levels and component levels involved in ER stress/PKA/glycogen synthase kinase-3ß (GSK-3ß)/ß-catenin pathway. Meanwhile, the effects of H89 and TUDCA were determined on HCV infection. RESULTS: Both chronic HCV infection and replicon-induced Wnt/ß-catenin signaling remained activated after HCV and replicon eradication by DAA. HCV infection activated PKA activity and PKA/GSK-3ß-mediated Wnt/ß-catenin signaling. Inhibition of PKA with H89 both repressed HCV and replicon replication and reversed PKA/GSK-3ß-mediated Wnt/ß-catenin signaling in both chronic HCV infection and replicon. Both chronic HCV infection and replicon induced ER stress. Inhibition of ER stress with TUDCA both repressed HCV and replicon replication and reversed ER stress/PKA/GSK-3ß-dependent Wnt/ß-catenin signaling. Inhibition of either PKA or ER stress both inhibited extracellular HCV infection. CONCLUSION: Targeting ER stress/PKA/GSK-3ß-dependent Wnt/ß-catenin signaling with PKA inhibitor could be a novel therapeutic strategy for HCV-infected patients to overcomes the issue of remaining activated Wnt/ß-catenin signaling by DAA treatment. Video Abstract.


Assuntos
Antivirais , Estresse do Retículo Endoplasmático , Hepatite C Crônica , Inibidores de Proteínas Quinases , Humanos , Antivirais/farmacologia , beta Catenina , Carcinoma Hepatocelular , Glicogênio Sintase Quinase 3 beta , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Neoplasias Hepáticas , Inibidores de Proteínas Quinases/farmacologia , Células Cultivadas
12.
J Mol Cell Cardiol ; 166: 116-126, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227736

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein of the sarcomere and a potential therapeutic target for treating contractile dysfunction in heart failure. Mimicking the structural dynamics of phosphorylated cMyBP-C by small-molecule drug binding could lead to therapies that modulate cMyBP-C conformational states, and thereby function, to improve contractility. We have developed a human cMyBP-C biosensor capable of detecting intramolecular structural changes due to phosphorylation and mutation. Using site-directed mutagenesis and time-resolved fluorescence resonance energy transfer (TR-FRET), we substituted cysteines in cMyBP-C N-terminal domains C0 through C2 (C0-C2) for thiol-reactive fluorescent probe labeling to examine C0-C2 structure. We identified a cysteine pair that upon donor-acceptor labeling reports phosphorylation-sensitive structural changes between the C1 domain and the tri-helix bundle of the M-domain that links C1 to C2. Phosphorylation reduced FRET efficiency by ~18%, corresponding to a ~11% increase in the distance between probes and a ~30% increase in disorder between them. The magnitude and precision of phosphorylation-mediated TR-FRET changes, as quantified by the Z'-factor, demonstrate the assay's potential for structure-based high-throughput screening of compounds for cMyBP-C-targeted therapies to improve cardiac performance in heart failure. Additionally, by probing C1's spatial positioning relative to the tri-helix bundle, these findings provide new molecular insight into the structural dynamics of phosphoregulation as well as mutations in cMyBP-C. Biosensor sensitivity to disease-relevant mutations in C0-C2 was demonstrated by examination of the hypertrophic cardiomyopathy mutation R282W. The results presented here support a screening platform to identify small molecules that regulate N-terminal cMyBP-C conformational states.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Insuficiência Cardíaca , Proteínas de Transporte , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Mutação , Fosforilação
13.
J Biol Chem ; 296: 100690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894203

RESUMO

Protein aggregation is the abnormal association of misfolded proteins into larger, often insoluble structures that can be toxic during aging and in protein aggregation-associated diseases. Previous research has established a role for the cytosolic Tsa1 peroxiredoxin in responding to protein misfolding stress. Tsa1 is also known to downregulate the cAMP/protein kinase A (PKA) pathway as part of the response to hydrogen peroxide stress. However, whether the cAMP/PKA pathway is involved in protein misfolding stress is not known. Using transcriptomics, we examined the response to protein misfolding stress and found upregulation of numerous stress gene functions and downregulation of many genes related to protein synthesis and other growth-related processes consistent with the well-characterized environmental stress response. The scope of the transcriptional response is largely similar in wild-type and tsa1 mutant strains, but the magnitude is dampened in the strain lacking Tsa1. We identified a direct protein interaction between Tsa1 and the Bcy1 regulatory subunit of PKA that is present under normal growth conditions and explains the observed differences in gene expression profiles. This interaction is increased in a redox-dependent manner in response to nascent protein misfolding, via Tsa1-mediated oxidation of Bcy1. Oxidation of Bcy1 causes a reduction in cAMP binding by Bcy1, which dampens PKA pathway activity, leading to a targeted reprogramming of gene expression. Redox regulation of the regulatory subunit of PKA provides a mechanism to mitigate the toxic consequences of protein misfolding stress that is distinct to stress caused by exogenous sources of reactive oxygen species.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dobramento de Proteína , Estresse Fisiológico , Perfilação da Expressão Gênica , Mutação , Agregados Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
14.
J Biol Chem ; 296: 100442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617875

RESUMO

The adipocyte hormone leptin regulates glucose homeostasis both centrally and peripherally. A key peripheral target is the pancreatic ß-cell, which secretes insulin upon glucose stimulation. Leptin is known to suppress glucose-stimulated insulin secretion by promoting trafficking of KATP channels to the ß-cell surface, which increases K+ conductance and causes ß-cell hyperpolarization. We have previously shown that leptin-induced KATP channel trafficking requires protein kinase A (PKA)-dependent actin remodeling. However, whether PKA is a downstream effector of leptin signaling or PKA plays a permissive role is unknown. Using FRET-based reporters of PKA activity, we show that leptin increases PKA activity at the cell membrane and that this effect is dependent on N-methyl-D-aspartate receptors, CaMKKß, and AMPK, which are known to be involved in the leptin signaling pathway. Genetic knockdown and rescue experiments reveal that the increased PKA activity upon leptin stimulation requires the membrane-targeted PKA-anchoring protein AKAP79/150, indicating that PKA activated by leptin is anchored to AKAP79/150. Interestingly, disrupting protein phosphatase 2B (PP2B) anchoring to AKAP79/150, known to elevate basal PKA signaling, leads to increased surface KATP channels even in the absence of leptin stimulation. Our findings uncover a novel role of AKAP79/150 in coordinating leptin and PKA signaling to regulate KATP channel trafficking in ß-cells, hence insulin secretion. The study further advances our knowledge of the downstream signaling events that may be targeted to restore insulin secretion regulation in ß-cells defective in leptin signaling, such as those from obese individuals with type 2 diabetes.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Leptina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Calcineurina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Secreção de Insulina , Leptina/metabolismo , Fosforilação , Cultura Primária de Células , Transporte Proteico , Transdução de Sinais
15.
J Biol Chem ; 296: 100227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361158

RESUMO

Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.I848T, is known to induce a hyperpolarized shift in the voltage dependence of activation in Nav1.7. So far, however, the mechanism to explain this increase in voltage sensitivity remains unknown. In the present study, we show that phosphorylation of the newly introduced Thr residue explains the functional change. We expressed wildtype human Nav1.7, the I848T mutant, or other mutations in HEK293T cells and performed whole-cell patch-clamp electrophysiology. As the insertion of a Thr residue potentially creates a novel phosphorylation site for Ser/Thr kinases and because Nav1.7 had been shown in Xenopus oocytes to be affected by protein kinases C and A, we used different nonselective and selective kinase inhibitors and activators to test the effect of phosphorylation on Nav1.7 in a human system. We identify protein kinase C, but not protein kinase A, to be responsible for the phosphorylation of T848 and thereby for the shift in voltage sensitivity. Introducing a negatively charged amino acid instead of the putative phosphorylation site mimics the effect on voltage gating to a lesser extent. 3D modeling using the published cryo-EM structure of human Nav1.7 showed that introduction of this negatively charged site seems to alter the interaction of this residue with the surrounding amino acids and thus to influence channel function. These results could provide new opportunities for the development of novel treatment options for patients with chronic pain.


Assuntos
Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/química , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Treonina/química , Substituição de Aminoácidos , Sítios de Ligação , Dor Crônica/genética , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Eritromelalgia/genética , Eritromelalgia/metabolismo , Eritromelalgia/fisiopatologia , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Isoleucina/química , Isoleucina/metabolismo , Modelos Moleculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estaurosporina/farmacologia , Treonina/metabolismo
16.
J Biol Chem ; 297(1): 100840, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34052227

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac muscle contractility. These interactions are disfavored by cMyBP-C phosphorylation. Heart failure patients often display decreased cMyBP-C phosphorylation, and phosphorylation in model systems has been shown to be cardioprotective against heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation or perturb its interactions with actin/myosin. Here we have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites; when combined with the cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified three reproducible hit compounds (suramin, NF023, and aurintricarboxylic acid) that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by an actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that these compounds bind to cMyBP-C, but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C fluorescence lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C-actin binding. We now have, for the first time, a validated high-throughput screen focused on cMyBP-C, a regulator of cardiac muscle contractility and known key factor in heart failure.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Ensaios de Triagem em Larga Escala , Miocárdio/metabolismo , Actinas/química , Animais , Técnicas Biossensoriais , Calorimetria , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica , Coelhos , Sarcômeros/metabolismo , Fatores de Tempo
17.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096339

RESUMO

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


Assuntos
Proteínas 14-3-3 , Paraplegia Espástica Hereditária , Humanos , Proteínas 14-3-3/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Paraplegia Espástica Hereditária/genética , Mutação , Corpo Caloso/patologia , Proteínas/genética
18.
Biochem Cell Biol ; 100(2): 162-170, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35041539

RESUMO

The A-kinase anchoring protein 5 (AKAP5) has a variety of biological activities. This study explored whether AKAP5 was involved in cardiomyocyte apoptosis induced by hypoxia and reoxygenation (H/R) and its possible mechanism. H9C2 cells were used to construct an H/R model in vitro, followed by AKAP5 overexpression. Flow cytometry was performed to determine the rate of cardiomyocyte apoptosis. Phosphorylation of phospholamban (PLN), sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), and apoptosis-related proteins was determined by western blotting. Immunofluorescence staining and immunoprecipitation were performed to detect the distribution and interaction between AKAP5, protein kinase A (PKA), and PLN. After H/R induction, H9C2 cells exhibited significantly reduced AKAP5 protein expression. Upregulation of AKAP5 promotes cell survival and significantly reduces lactate dehydrogenase (LDH) levels and apoptosis rates in H9C2 cells. In addition, the overexpression of AKAP5 was accompanied by the activation of the PLN/SERCA2a signaling pathway and a reduction in apoptosis. Immunofluorescence staining and immunoprecipitation revealed that AKAP5 co-localized and interacted with PLN and PKA. Interestingly, St-Ht31, an inhibitory peptide that disrupts AKAP interactions with regulatory subunits, inhibits the effect of AKAP5 overexpression on H/R-induced apoptosis in H9C2 cardiomyocytes. AKAP5 overexpression alleviated H/R-induced cardiomyocyte apoptosis possibly by anchoring PKA to mediate the PLN/SERCA pathway, suggesting that AKAP5 is a potential therapeutic target for the prevention and treatment of ischemia-reperfusion injury.


Assuntos
Proteínas de Ancoragem à Quinase A , Miócitos Cardíacos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/farmacologia , Apoptose , Proteínas de Ligação ao Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo
19.
FASEB J ; 35(8): e21771, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34275172

RESUMO

Impaired mitochondrial fusion, due in part to decreased mitofusin 2 (Mfn2) expression, contributes to unrestricted cell proliferation and apoptosis-resistance in hyperproliferative diseases like pulmonary arterial hypertension (PAH) and non-small cell lung cancer (NSCLC). We hypothesized that Mfn2 levels are reduced due to increased proteasomal degradation of Mfn2 triggered by its phosphorylation at serine 442 (S442) and investigated the potential kinase mediators. Mfn2 expression was decreased and Mfn2 S442 phosphorylation was increased in pulmonary artery smooth muscle cells from PAH patients and in NSCLC cells. Mfn2 phosphorylation was mediated by PINK1 and protein kinase A (PKA), although only PINK1 expression was increased in these diseases. We designed a S442 phosphorylation deficient Mfn2 construct (PD-Mfn2) and a S442 constitutively phosphorylated Mfn2 construct (CP-Mfn2). The effects of these modified Mfn2 constructs on Mfn2 expression and biological function were compared with those of the wildtype Mfn2 construct (WT-Mfn2). WT-Mfn2 increased Mfn2 expression and mitochondrial fusion in both PAH and NSCLC cells resulting in increased apoptosis and decreased cell proliferation. Compared to WT-Mfn2, PD-Mfn2 caused greater Mfn2 expression, suppression of proliferation, apoptosis induction, and cell cycle arrest. Conversely, CP-Mfn2 caused only a small increase in Mfn2 expression and did not restore mitochondrial fusion, inhibit cell proliferation, or induce apoptosis. Silencing PINK1 or PKA, or proteasome blockade using MG132, increased Mfn2 expression, enhanced mitochondrial fusion and induced apoptosis. In a xenotransplantation NSCLC model, PD-Mfn2 gene therapy caused greater tumor regression than did therapy with WT-Mfn2. Mfn2 deficiency in PAH and NSCLC reflects proteasomal degradation triggered by Mfn2-S442 phosphorylation by PINK1 and/or PKA. Inhibiting Mfn2 phosphorylation has potential therapeutic benefit in PAH and lung cancer.


Assuntos
Proliferação de Células , GTP Fosfo-Hidrolases/metabolismo , Hipertensão Pulmonar/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteólise , Células A549 , Animais , GTP Fosfo-Hidrolases/genética , Humanos , Hipertensão Pulmonar/genética , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Quinases/genética
20.
Biomarkers ; 27(2): 138-150, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34927500

RESUMO

INTRODUCTION: Bladder cancer is still of unknown initiation and progression, it is difficult to treat the patient once bladder cancer have a distant metastasis. MATERIALS AND METHODS: In the present study, propolis extract was evaluated against bladder cancer cells (T24). Two independent pathways were investigated, apoptosis and angiogenesis, Bax, Bcl-2, P53, and caspase-3 for apoptosis, vascular endothelial growth factor receptor and protein kinase A as angiogenesis potential targets. OBJECTIVES: Molecular docking studies will be conducted for the major known constituents of Egyptian propolis into apoptotic and angiogenic protein targets, to give better insights to the possible binding mode and interactions and investigate the ability of propolis constituents to target both apoptotic and angiogenic pathways. RESULTS: Propolis showed anti-proliferative activity against T24 cancer cell line, the IC50 value was 6.36 µg/ml. Also significant effects of propolis on Bax, Bcl-2, P53, and caspase-3 were observed. DISCUSSION: These obtained results proved the ability of propolis to induce cell death. Also it has revealed noticeable effects on protein kinase A and vascular endothelial growth factor receptor. CONCLUSION: The obtained results can encourage us to say that propolis extract can induce a programmed cell death in human bladder cancer cells, and also affect angiogenesis.


Assuntos
Antineoplásicos , Própole , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Detecção Precoce de Câncer , Humanos , Simulação de Acoplamento Molecular , Própole/farmacologia , Própole/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA