Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(4): 2503-2508, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875467

RESUMO

Nanoscopic artificial vesicles containing functional protein transporters are fundamental for synthetic biology. Energy-providing modules, such as proton pumps, are a basis for simple nanoreactors. We report on the first insertion of a functional transmembrane protein into asymmetric polymersomes from an ABC triblock copolymer. The polymer with the composition poly(ethylene glycol)-poly(diisopropylaminoethyl methacrylate)-poly(styrenesulfonate) (PEG-PDPA-PSS) was synthesized by sequential controlled radical polymerization. PEG and PSS are two distinctively different hydrophilic blocks, allowing for a specific orientation of our protein, the light-activated proton pump proteorhodopsin (PR), into the final proteopolymersome. A very interesting aspect of the PEG-PDPA-PSS triblock copolymers is that it allowed for simultaneous vesicle formation and oriented insertion of PR simply by adjusting the pH. The intrinsic positive charge of PR's intracellular surface was enhanced by a His-tag, which aligns readily with the negative charges of the PSS on the outside of the polymersomes. The directed insertion of PR was confirmed by a light-dependent pH change of the proteopolymersome solution, indicating the intended orientation. We have hereby demonstrated the first successful oriented insertion of a proton pump into an artificial asymmetric membrane.

2.
Membranes (Basel) ; 5(3): 307-51, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26264033

RESUMO

In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA