Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(2): e28543, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36727646

RESUMO

The presence of neutralizing antibodies (NAbs) is a major correlate of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Thus, different in vitro pseudoviruses-based assays have been described to detect NAbs against SARS-CoV-2. However, the determination of NAbs against SARS-CoV-2 in people living with HIV (PLWH) through HIV-based pseudoparticles could be influenced by cross-neutralization activity or treatment, impeding accurate titration of NAbs. Two assays were compared using replication-defective HIV or VSV-based particles pseudotyped with SARS-CoV-2 spike to measure NAbs in COVID-19-recovered and COVID-19-naïve PLWH. The assay based on HIV-pseudoparticles displayed neutralization activity in all COVID-19-recovered PLWH with a median neutralizing titer 50 (NT50) of 1417.0 (interquartile range [IQR]: 450.3-3284.0), but also in 67% of COVID-19-naïve PLWH (NT50: 631.5, IQR: 16.0-1535.0). Regarding VSV-pseudoparticles system, no neutralization was observed in COVID-19-naïve PLWH as expected, whereas in comparison with HIV-pseudoparticles assay lower neutralization titers were measured in 75% COVID-19-recovered PLWH (NT50: 100.5; IQR: 20.5-1353.0). Treatment with integrase inhibitors was associated with inaccurate increase in neutralization titers when HIV-based pseudoparticles were used. IgG purification and consequent elimination of drugs from samples avoided the interference with retroviral cycle and corrected the lack of specificity observed in HIV-pseudotyped assay. This study shows methodological alternatives based on pseudoviruses systems to determine specific SARS-CoV-2 neutralization titers in PLWH.


Assuntos
Fármacos Anti-HIV , COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Anticorpos Antivirais , Inibidores de Integrase , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes
2.
Sens Actuators B Chem ; 387: 133746, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37020533

RESUMO

The SARS-CoV-2 spreading rapidly has aroused catastrophic public healthcare issues and economy crisis worldwide. It plays predominant role to rapidly and accurately diagnose the virus for effective prevention and treatment. As an abundant transmembrane protein, spike protein (SP) is one of the most valuable antigenic biomarkers for diagnosis of COVID-19. Herein a phage expression of WNLDLSQWLPPM peptide specific to SARS-CoV-2 SP was screened. Molecular docking revealed that the isolated peptide binds to major antigenic epitope locating at S2 subunit with hydrogen bonding. Taking the specific peptide as antigen sensing probe and tyramine signal amplification (TSA), an ultrasensitive "peptide-antigen-antibody" ELISA (p-ELISA) was explored, by which the limit of detection (LOD) was 14 fM and 2.8 fM SARS-CoV-2 SP antigen for first TSA and secondary TSA, respectively. Compared with the LOD by the p-ELISA by direct mode, the sensitivity with 2nd TSA enhanced 100 times. Further, the proposed p-ELISA method can detect SARS-CoV-2 pseudoviruses down to 10 and 3 TCID50/mL spiked in healthy nasal swab sample with 1st TSA and 2nd TSA, separately. Thus, the proposed p-ELISA method with TSA is expected to be a promising ultrasensitive tool for rapidly detecting SARS-CoV-2 antigen to help control the infectious disease.

3.
Small ; 18(6): e2105640, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34866333

RESUMO

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. The primary receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), yet new studies reveal the importance of additional extracellular co-receptors that mediate binding and host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Biophysical and cell infection studies are done to determine whether vimentin might bind SARS-CoV-2 and facilitate its uptake. Dynamic light scattering shows that vimentin binds to pseudovirus coated with the SARS-CoV-2 spike protein, and antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. The results are consistent with a model in which extracellular vimentin acts as a co-receptor for SARS-CoV-2 spike protein with a binding affinity less than that of the spike protein with ACE2. Extracellular vimentin may thus serve as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry, and vimentin-targeting agents may yield new therapeutic strategies for preventing and slowing SARS-CoV-2 infection.


Assuntos
Ligação Proteica , SARS-CoV-2 , Vimentina , Anticorpos/farmacologia , COVID-19 , Humanos , Glicoproteína da Espícula de Coronavírus , Vimentina/antagonistas & inibidores , Vimentina/metabolismo
4.
Mol Biol (Mosk) ; 56(1): 83-102, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35082260

RESUMO

The COVID-19 pandemic caused by the previously unknown SARS-CoV-2 Betacoronavirus made it extremely important to develop simple and safe cellular systems which allow manipulation of the viral genome and high-throughput screening of its potential inhibitors. In this review, we made an attempt at summarizing the currently existing data on genetic engineering systems used to study not only SARS-CoV-2, but also other viruses from the Coronaviridae family. In addition, the review covers the basic knowledge about the structure and the life cycle of coronaviruses.


Assuntos
COVID-19 , Coronaviridae , Coronaviridae/genética , Engenharia Genética , Humanos , Pandemias , SARS-CoV-2
5.
Bull Exp Biol Med ; 172(6): 729-733, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35501651

RESUMO

HIV-1 env-pseudoviruses are a useful tool in the search for antiviral drugs (entry inhibitors) and evaluation of the efficacy of HIV-1 vaccines. Given the high genetic variability of HIV-1, it is necessary to regularly update the panels of pseudoviruses in accordance with the emergence of new strains. Based on genetic variants of HIV-1 circulating in the regions of the Siberian Federal District, 13 HIV-1 env-pseudoviruses of recombinant form CRF63_02A and subtype A6 were obtained. Most pseudoviruses have been shown to be sensitive to neutralization by bnAbs VRC01, PGT126, and 10E8, moderately sensitive to bnAbs PG9 and 4E10, and resistant to bnAbs 2G12, PG16, and 2F5. All obtained variants of pseudoviruses are CCR5-tropic.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , HIV-1/genética , Humanos , Testes de Neutralização
6.
Chem Eng J ; 421: 127742, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33235538

RESUMO

SARS-CoV-2 is a highly contagious virus and is causing a global pandemic. SARS-CoV-2 infection depends on the recognition of and binding to the cellular receptor human angiotensin-converting enzyme 2 (hACE2) through the receptor-binding domain (RBD) of the spike protein, and disruption of this process can effectively inhibit SARS-CoV-2 invasion. Plasma-activated water efficiently inactivates bacteria and bacteriophages by causing damage to biological macromolecules, but its effect on coronavirus has not been reported. In this study, pseudoviruses with the SARS-CoV-2 S protein were used as a model, and plasma-activated water (PAW) effectively inhibited pseudovirus infection through S protein inactivation. The RBD was used to study the molecular details, and the RBD binding activity was inactivated by plasma-activated water through the RBD modification. The short-lived reactive species in the PAW, such as ONOO-, played crucial roles in this inactivation. Plasma-activated water after room-temperature storage of 30 days remained capable of significantly reducing the RBD binding with hACE2. Together, our findings provide evidence of a potent disinfection strategy to combat the epidemic caused by SARS-CoV-2.

7.
Angew Chem Int Ed Engl ; 60(40): 21662-21667, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34278671

RESUMO

There is an urgent need to develop antiviral drugs and alleviate the current COVID-19 pandemic. Herein we report the design and construction of chimeric oligonucleotides comprising a 2'-OMe-modified antisense oligonucleotide and a 5'-phosphorylated 2'-5' poly(A)4 (4A2-5 ) to degrade envelope and spike RNAs of SARS-CoV-2. The oligonucleotide was used for searching and recognizing target viral RNA sequence, and the conjugated 4A2-5 was used for guided RNase L activation to sequence-specifically degrade viral RNAs. Since RNase L can potently cleave single-stranded RNA during innate antiviral response, degradation efficiencies with these chimeras were twice as much as those with only antisense oligonucleotides for both SARS-CoV-2 RNA targets. In pseudovirus infection models, chimera-S4 achieved potent and broad-spectrum inhibition of SARS-CoV-2 and its N501Y and/or ΔH69/ΔV70 mutants, indicating a promising antiviral agent based on the nucleic acid-hydrolysis targeting chimera (NATAC) strategy.


Assuntos
Antivirais/farmacologia , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Proteínas do Envelope de Coronavírus/genética , Desenho de Fármacos , Células HEK293 , Humanos , Hidrólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , RNA Viral/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
8.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31217240

RESUMO

Broad and potent neutralizing antibodies (bnAbs) with multiple epitope specificities evolve in HIV-1-infected children. Herein, we studied two antiretroviral-naive chronically HIV-1 clade C-infected monozygotic pediatric twins, AIIMS_329 and AIIMS_330, with potent plasma bnAbs. Elite plasma neutralizing activity was observed since the initial sampling at 78 months of age in AIIMS_330 and persisted throughout, while in AIIMS_329 it was seen at 90 months of age, after which the potency decreased over time. We evaluated potential viral characteristics associated with the varied immune profiles by generating single genome-amplified pseudoviruses. The AIIMS_329 viruses generated from the 90-month time point were neutralization sensitive to bnAbs and contemporaneous plasma antibodies, while viruses from the 112-month and 117-month time points were resistant to most bnAbs and contemporaneous plasma. AIIMS_329 viruses developed resistance to plasma neutralizing antibodies (nAbs) plausibly by N160 glycan loss and V1 and V4 loop lengthening. The viruses generated from AIIMS_330 (at 90 and 117 months) showed varied susceptibility to bnAbs and autologous contemporaneous plasma antibodies, while the viruses of the 112-month time point, at which the plasma nAb specificities mapped to the V2 glycan, V3 glycan, and CD4 binding site (CD4bs), were resistant to contemporaneous plasma antibodies as well as to most bnAbs. Chimeric viruses were constructed from 90-month-time-point PG9-sensitive AIIMS_329 and AIIMS_330 viruses with swapped V1V2 regions of their respective evolved viruses (at 112 and 117 months), which led to higher resistance to neutralization by PG9 and autologous plasma antibodies. We observed the evolution of a viral pool in the AIIMS_330 donor comprising plasma antibody neutralization-sensitive or -resistant diverse autologous viruses that may have contributed to the development and maintenance of elite neutralizing activity.IMPORTANCE Herein, we report the longitudinal development of bnAbs in a pair of chronically HIV-1 clade C-infected monozygotic pediatric twins, AIIMS_329 and AIIMS_330, who acquired the infection by vertical transmission. The plasma from both donors, sharing a similar genetic makeup and infecting virus, showed the evolvement of bnAbs targeting common epitopes in the V2 and V3 regions of the envelope, suggesting that bnAb development in these twins may perhaps be determined by specific sequences in the shared virus that can guide the development of immunogens aimed at eliciting V2 and V3 bNAbs. Characterization of the neutralization-sensitive and -resistant viruses coevolving with bNAbs in the contemporaneous AIIMS_330 plasma provides information toward understanding the viral alterations that may have contributed to the development of resistance to bnAbs. Further longitudinal studies in more monozygotic and dizygotic twin pairs will help in delineating the role of host and viral factors that may contribute to the development of bnAbs.


Assuntos
Anticorpos Neutralizantes/sangue , Doenças em Gêmeos/virologia , Infecções por HIV/imunologia , HIV-1/imunologia , Criança , Progressão da Doença , Doenças em Gêmeos/imunologia , Epitopos/metabolismo , Anticorpos Anti-HIV/sangue , Humanos , Estudos Longitudinais , Gêmeos Monozigóticos
9.
Diagnostics (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337826

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by reactivation of dormant JC polyomavirus (JCPyV). PML was mainly observed in immunocompromised individuals, such as HIV-positive patients, autoimmune disease patients, and cancer patients. Given that the presence of anti-JCPyV antibodies in serum is a risk indicator for PML development, it is essential to monitor anti-JCPyV antibody levels. In the present study, we established reporter-based single-infection neutralization assays for JCPyV and the genetically similar BK polyoma virus (BKPyV). We then confirmed the lack of cross-reactivity between the two viruses using test sera obtained from mice immunized with plasmids encoding the JCPyV or BKPyV capsid. Next, we compared neutralization antibody titers in sera from healthy donors, patients with multiple sclerosis (MS), and HIV-positive patients using an in-house enzyme-linked immunosorbent assay (ELISA) with JCPyV-like particles (virus-like particles; VLPs). A positive correlation was demonstrated between the neutralization titer (75% infectious concentration; IC75) against JCPyV and the antibody titer obtained by VLP-based JCPyV ELISA. This assay system may be applied to detect antibodies against other PyVs by generation of pseudoviruses using the respective capsid expression plasmids, and is expected to contribute to the surveillance of PyV as well as basic research on these viruses.

10.
Talanta ; 277: 126319, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805946

RESUMO

The prompt and accurate point-of-care test (POCT) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected persons or virus-containing environmental samples is of great importance. The present work reports a highly integrated electrochemiluminescence/electrochemical (ECL/EC) sensor for determination of SARS-CoV-2 pseudoviruses, in which bio-recognition element (SARS-CoV-2 IgG antibody), bifunctional probe (tris (2,2'-bipyridyl) ruthenium (Ru(bpy)32+)), and amplification material (gold nanoparticles (Au NPs)) are designed into bipolar silica nanochannel array (bp-SNA). bp-SNA consisting of homogeneous two-layer mesoporous silica films bears inner silanol groups and outer amino groups, generating a solid "electrostatic nanocage" for stable confinement of Ru(bpy)32+ and Au NPs inside the nanochannels and further providing functional sites for covalent modification of SARS-CoV-2 IgG antibody. Owing to the preconcentration capacity of bp-SNA and amplified effect of Au NPs, ECL or EC signals of Ru(bpy)32+ can be remarkably promoted and thereby increase the analytical performance, which can be diminished by immunorecognization of target SARS-CoV-2 pseudoviruses on the sensing interface. The developed integrated ECL/EC sensor based on Ru@AuNPs/bp-SNA modified solid indium tin oxide electrode enables the sensitive analysis of SARS-CoV-2 pseudoviruses by ECL mode with a linear range of 50 TU mL-1-5000 TU mL-1, as well as the EC mode with a linear range of 100 TU mL-1-5000 TU mL-1. Moreover, the designed sensor showed satisfactory results in the analyses of saliva and pond water samples. When flexible electrode substate (polyethylene terephthalate) is employed, Ru@AuNPs/bp-SNA has great potential to integrate with KN95 face masks for direct detection of SARS-CoV-2 pseudoviruses produced from breathing, talking and coughing processes, which could provide an efficient platform for POCT diagnosis.


Assuntos
COVID-19 , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Medições Luminescentes , Nanopartículas Metálicas , SARS-CoV-2 , Dióxido de Silício , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Nanopartículas Metálicas/química , Ouro/química , Dióxido de Silício/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Medições Luminescentes/métodos , COVID-19/diagnóstico , COVID-19/virologia , Técnicas Biossensoriais/métodos , Anticorpos Antivirais/imunologia , Imunoglobulina G/análise , Compostos Organometálicos
11.
Sci Bull (Beijing) ; 68(21): 2598-2606, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37758615

RESUMO

Cross-species transmission of viruses from wildlife animal reservoirs, such as bats, poses a threat to human and domestic animal health. Previous studies have shown that domestic animals have important roles as intermediate hosts, enabling the transmission of genetically diverse coronaviruses from natural hosts to humans. Here, we report the identification and characterization of a novel canine coronavirus (VuCCoV), which caused an epidemic of acute diarrhea in Vulpes (foxes) in Shenyang, China. The epidemic started on November 8, 2019, and caused more than 39,600 deaths by January 1, 2022. Full-length viral genomic sequences were obtained from 15 foxes with diarrhea at the early stage of this outbreak. The VuCCoV genome shared more than 90% nucleotide identity with canine coronavirus (CCoV) for three of the four structural genes, with the S gene showing a larger amount of divergence. In addition, 67% (10/15) of the VuCCoV genomes contained an open reading frame (ORF3) gene, which was previously only detected in CCoV-I genomes. Notably, VuCCoV had only two to three amino acid differences at the partial RNA-dependent RNA polymerase (RdRp) level to bat CoV, suggesting a close genetic relationship. Therefore, these novel VuCCoV genomes represent a previously unsampled lineage of CCoVs. We also show that the VuCCoV spike protein binds to canine and fox aminopeptidase N (APN), which may allow this protein to serve as an entry receptor. In addition, cell lines were identified that are sensitive to VuCCoV using a pseudovirus system. These data highlight the importance of identifying the diversity and distribution of coronaviruses in domestic animals, which could mitigate future outbreaks that could threaten livestock, public health, and economic growth.


Assuntos
Coronavirus Canino , Raposas , Animais , Cães , Humanos , Coronavirus Canino/genética , Animais Selvagens , SARS-CoV-2/genética , Animais Domésticos , Surtos de Doenças/veterinária , Diarreia/epidemiologia
12.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112982

RESUMO

The unprecedented pandemic of COVID-19, caused by a novel coronavirus, SARS-CoV-2, and its highly transmissible variants, led to massive human suffering, death, and economic devastation worldwide. Recently, antibody-evasive SARS-CoV-2 subvariants, BQ and XBB, have been reported. Therefore, the continued development of novel drugs with pan-coronavirus inhibition is critical to treat and prevent infection of COVID-19 and any new pandemics that may emerge. We report the discovery of several highly potent small-molecule inhibitors. One of which, NBCoV63, showed low nM potency against SARS-CoV-2 (IC50: 55 nM), SARS-CoV-1 (IC50: 59 nM), and MERS-CoV (IC50: 75 nM) in pseudovirus-based assays with excellent selectivity indices (SI > 900), suggesting its pan-coronavirus inhibition. NBCoV63 showed equally effective antiviral potency against SARS-CoV-2 mutant (D614G) and several variants of concerns (VOCs) such as B.1.617.2 (Delta), B.1.1.529/BA.1 and BA.4/BA.5 (Omicron), and K417T/E484K/N501Y (Gamma). NBCoV63 also showed similar efficacy profiles to Remdesivir against authentic SARS-CoV-2 (Hong Kong strain) and two of its variants (Delta and Omicron), SARS-CoV-1, and MERS-CoV by plaque reduction in Calu-3 cells. Additionally, we show that NBCoV63 inhibits virus-mediated cell-to-cell fusion in a dose-dependent manner. Furthermore, the absorption, distribution, metabolism, and excretion (ADME) data of NBCoV63 demonstrated drug-like properties.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Antirretrovirais , Glicoproteína da Espícula de Coronavírus/genética
13.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254643

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Produtos Biológicos/farmacologia , Quimases , Ácido Fólico
14.
Clin Chim Acta ; 539: 237-243, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572136

RESUMO

BACKGROUND: Nucleic acid detection represents limitations due to its false-negative rate and technical complexity in the COVID-19 pandemic. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody tests are widely spread all over the world presently. However, there is no report on the effectiveness of anti-SARS-CoV-2 antibody testing methods in China. METHODS: We gathered 10776 serum samples from close contacts of the SARS-CoV-2 infections in Fujian of China and used 2 chemiluminescence immunoassays (Wantai Bio., Yahuilong Bio.) and 2 lateral flow immunoassays (Lizhu Bio. and Dongfang Bio.) to perform the anti-SARS-CoV-2 antibody tests in China. RESULTS: The 4 antibody tests have great diagnostic value for infected or uninfected, especially in the neutralizing antibodies tests, the AUC can reach 0.939 (Wantai Bio.) and 0.916 (Yahuilong Bio.). Furthermore, we used pseudoviruses and euvirus neutralization assay to validate the effectiveness of these antibody test, the results of pseudoviruses neutralization assay or euvirus neutralization assay shows a considerable correlation with the 4 antibody detection respectively, particularly in euvirus neutralization assay, neutralizing antibodies detected by Wantai Bio. or Yahuilong Bio., the correlation can get the level of 0.93 or 0.82. CONCLUSIONS: The findings of this study demonstrate that the detections of antibodies have profound value in the diagnosis of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Pandemias , Anticorpos Antivirais , Anticorpos Neutralizantes
15.
Mol Biol ; 56(1): 72-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194246

RESUMO

The COVID-19 pandemic caused by the previously unknown SARS-CoV-2 Betacoronavirus made it extremely important to develop simple and safe cellular systems which allow manipulation of the viral genome and high-throughput screening of its potential inhibitors. In this review, we made an attempt at summarizing the currently existing data on genetic engineering systems used to study not only SARS-CoV-2, but also other viruses from the Coronaviridae family. In addition, the review covers the basic knowledge about the structure and the life cycle of coronaviruses.

16.
Microbiol Res ; 258: 126993, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35240544

RESUMO

Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.


Assuntos
COVID-19 , Vacinas , Anticorpos Neutralizantes , Antivirais/farmacologia , COVID-19/prevenção & controle , Humanos , SARS-CoV-2
17.
Vavilovskii Zhurnal Genet Selektsii ; 26(2): 214-221, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35434492

RESUMO

HIV infection still remains a major challenge for healthcare systems of the world. There are several aspects on counteracting the HIV/AIDS epidemic. The f irst aspect covers preventive measures including educational campaigns on HIV/AIDS and promotion of a healthy lifestyle, protected sex, and pre-exposure prophylaxis of vulnerable groups. The second aspect is timely HIV testing and the use of antiretroviral therapy when test results come back positive. The third aspect is the scientif ic research associated with discovering new pharmaceutical agents and developing HIV-1 vaccines. Selecting an adequate tool for quick and accurate in vitro eff icacy assessment is the key aspect for eff icacy assessment of vaccines and chemotherapy drugs. The classical method of virology, which makes it possible to evaluate the neutralizing activity of the sera of animals immunized with experimental vaccines and the eff icacy of chemotherapy agents is the method of neutralization using viral isolates and infectious molecular clones, i. e. infectious viral particles obtained via cell transfection with a plasmid vector including the full-length HIV-1 genome coding structural, regulatory, and accessory proteins of the virus required for the cultivation of replication-competent viral particles in cell culture. However, neutralization assessment using viral isolates and infectious molecular clones is demanding in terms of time, effort, and biosafety measures. An alternative eliminating these disadvantages and allowing for rapid screening is the use of pseudoviruses, which are recombinant viral particles, for the analysis of neutralizing activity. Pseudotyped viruses have defective genomes restricting their replication to a single cycle, which renders them harmless compared to infectious viruses. The present review focuses on describing viral model systems for in vitro eff icacy assessment of vaccines and drugs against HIV-1, which include primary HIV-1 isolates, laboratoryadapted strains, infectious molecular clones, and env-pseudoviruses. A brief comparison of the listed models is presented. The HIV-1 env-pseudoviruses approach is described in more detail.

18.
Curr Pharm Biotechnol ; 23(8): 1118-1129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34375189

RESUMO

BACKGROUND: Coronaviruses (CoVs) infect a wide range of animals and birds. Their tropism is primarily determined by the ability of the spike protein to bind to a host cell surface receptor. The ongoing outbreak of SARS-CoV-2 inculcates the need for the development of effective intervention strategies. OBJECTIVES: In this study, we aim to produce pseudotyped coronaviruses of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 and show its applications, including virus entry, neutralization, and screening of entry inhibitors from natural products. METHODS: Here, we generated VSV-based pseudotyped coronaviruses (CoV-PVs) for SARS-CoV-1, MERS-CoV, and SARS-CoV-2. Recombinant spike proteins of SARS-CoV-1, MERS-CoV, and SARS-CoV-2 were transiently expressed in HEK293T cells followed by infection with recombinant VSV. High titer pseudoviruses were harvested and subjected to distinct validation assays, which confirms the proper spike pseudotyping. Further, specific receptor-mediated entry was confirmed by antibody neutralization and soluble form of receptor inhibition assay on Vero E6 cells. Next, these CoV-PVs were used for screening of antiviral activity of natural products such as green tea and Spirulina extract. RESULTS: Medicinal plants and natural compounds have been traditionally used as antiviral agents. In the first series of experiments, we demonstrated that pseudotyped viruses specifically bind to their receptors for cellular entry. SARS-CoV-1 and MERS-CoV anti-sera neutralize SARS-CoV-1-PV and SARS-CoV-2-PV, and MERS-CoV-PV, respectively. Incubation of soluble ACE2 with CoV-PVs inhibited entry of SARS-CoV-1 and SARS-CoV-2 PVs but not MERS-CoV-PV. Also, transient expression of ACE2 and DPP4 in non-permissive BHK21 cells enabled infection by SARS-CoV-1-PV, SARS-CoV-2-PV, and MERS-CoV-PV, respectively. Next, we showed the antiviral properties of known entry inhibitors of enveloped viruses, Spirulina, and green tea extracts against CoV-PVs. SARSCoV- 1-PV, MERS-CoV-PV, and SARS-CoV-2-PV entry was blocked with higher efficiency when preincubated with either green tea or Spirulina extracts. Green tea provided a better inhibitory effect by binding to the S1 domain of the spike and blocking the spike interaction with its receptor. CONCLUSION: In summary, we demonstrated that pseudotyped viruses are an ideal tool for studying viral entry, quantification of neutralizing antibodies, and screening of entry inhibitors in a BSL-2 facility. Moreover, green tea might be a promising natural remedy against emerging coronaviruses.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Células HEK293 , Humanos , Extratos Vegetais/farmacologia , SARS-CoV-2 , Chá
19.
J Ethnopharmacol ; 258: 112931, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32360797

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are used in the management of Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) in many developing country settings where HIV-1 subtype C drives the epidemic. Efforts to identify plant derived molecules with anti-HIV properties require reproducible assay systems for routine screening of selected plant compounds. Although a number of standardized HIV-1 pseudoviruses have been generated to assess infectivity, replicability or reproducibility, HIV-1 subtype C (HIV-1-C) pseudoviruses have not been comprehensively characterized to identify inhibitory plant substances. AIM OF THE STUDY: The current study aimed at developing an HIV-1-C pseudovirus assay, and evaluate plant substances targeting reverse transcriptase (RT) activity. MATERIALS AND METHODS: HIV-1 subtype C pseudoviruses containing a luciferase reporter gene were generated by transfection of human 293T cells. HIV-1 subtype B (HIV-1-B) wild type pseudoviruses and mutants resistant to nucleoside and non-nucleoside RT inhibitors were also generated and used as controls. Selected plant substances and the RT inhibitors Zidovudine (AZT) and Nevirapine (NVP), were used to evaluate inhibition. Pseudovirus infectivity was determined by luciferase measurement in CF2/CD4+/CCR5 cells, and cytotoxicity was determined using the MTT assay. AZT and NVP inhibited wild type pseudoviruses in a dose dependent manner, with IC50 values in the nanomolar range. RESULTS: Pseudoviruses harbouring RT drug resistance mutations were poorly suppressed by AZT and NVP. Catechin, obtained from Peltophorum africanum inhibited HIV-1-C and HIV-1-B pseudoviruses with selective indices of 6304 µM (IC50: 0.49 µM, CC50: 3089 µM) and 1343 µM (IC50: 2.3 µM, CC50: 3089 µM), respectively; while the methanol root crude extract of Elaeodendron transvaalense gave IC50 values of 11.11 µg/ml and 16.86 µg/ml, respectively. CONCLUSION: The developed HIV-1-C pseudovirus assay can be used to screen plant substances for RT inhibition, and may have utility in settings with limited access to high level biosafety facilities.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Preparações de Plantas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/administração & dosagem , Relação Dose-Resposta a Droga , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/enzimologia , Humanos , Concentração Inibidora 50 , Nevirapina/administração & dosagem , Nevirapina/farmacologia , Preparações de Plantas/administração & dosagem , Plantas Medicinais/química , Reprodutibilidade dos Testes , Inibidores da Transcriptase Reversa/administração & dosagem , Zidovudina/administração & dosagem , Zidovudina/farmacologia
20.
J Int Assoc Provid AIDS Care ; 16(2): 201-208, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-23422744

RESUMO

Identification of broadly neutralizing antibodies (NAbs) generated during the course of HIV-1 infection is essential for effective HIV-1 vaccine design. The magnitude and breadth of neutralizing activity in the sera from 46 antiretroviral treatment-naive HIV-1 clade C-infected individuals was measured in a single round infection assay using TZM-bl cells and multisubtype panel of env-pseudotyped viruses. Higher levels of NAb response (NAb titer 500 to >40 000) were measured in these patients against tier 1 and tier 2 viruses. The average magnitude of the NAb responses of chronically infected individuals against heterologous viruses was consistently higher than the response observed from individuals with long-term nonprogressor ( P = .086). To conclude, high titers of HIV-1 cross-neutralizing activity were observed in the sera from a subset of HIV-1-infected individuals in Chennai, India. Additional studies of the epitopes recognized by these antibodies may facilitate the discovery of an effective vaccine immunogen.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Contagem de Linfócito CD4 , Estudos de Coortes , Reações Cruzadas , Humanos , Testes de Neutralização , RNA Viral/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA