Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Appl Environ Microbiol ; 90(3): e0232723, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376236

RESUMO

Zinc is an important transition metal that is essential for numerous physiological processes while excessive zinc is cytotoxic. Pseudomonas aeruginosa is a ubiquitous opportunistic human pathogen equipped with an exquisite zinc homeostatic system, and the two-component system CzcS/CzcR plays a key role in zinc detoxification. Although an increasing number of studies have shown the versatility of CzcS/CzcR, its physiological functions are still not fully understood. In this study, transcriptome analysis was performed, which revealed that CzcS/CzcR is silenced in the absence of the zinc signal but modulates global gene expression when the pathogen encounters zinc excess. CzcR was demonstrated to positively regulate the copper tolerance gene ptrA and negatively regulate the pyochelin biosynthesis regulatory gene pchR through direct binding to their promoters. Remarkably, the upregulation of ptrA and downregulation of pchR were shown to rescue the impaired capacity of copper tolerance and prevent pyochelin overproduction, respectively, caused by zinc excess. This study not only advances our understanding of the regulatory spectrum of CzcS/CzcR but also provides new insights into stress adaptation mediated by two-component systems in bacteria to balance the cellular processes that are disturbed by their signals. IMPORTANCE: CzcS/CzcR is a two-component system that has been found to modulate zinc homeostasis, quorum sensing, and antibiotic resistance in Pseudomonas aeruginosa. To fully understand the physiological functions of CzcS/CzcR, we performed a comparative transcriptome analysis in this study and discovered that CzcS/CzcR controls global gene expression when it is activated during zinc excess. In particular, we demonstrated that CzcS/CzcR is critical for maintaining copper tolerance and iron homeostasis, which are disrupted during zinc excess, by inducing the expression of the copper tolerance gene ptrA and repressing the pyochelin biosynthesis genes through pchR. This study revealed the global regulatory functions of CzcS/CzcR and described a new and intricate adaptive mechanism in response to zinc excess in P. aeruginosa. The findings of this study have important implications for novel anti-infective interventions by incorporating metal-based drugs.


Assuntos
Cobre , Fenóis , Infecções por Pseudomonas , Tiazóis , Humanos , Cobre/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Zinco/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201297

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to survive in the host; however, the host immune system limits the availability of iron. Pyochelin (PCH) is a major siderophore produced by P. aeruginosa during infection, which can help P. aeruginosa survive in an iron-restricted environment and cause infection. The infection activity of P. aeruginosa is regulated by the Pseudomonas quinolone signal (PQS) quorum-sensing system. The system uses 2-heptyl-3-hydroxy-4-quinolone (PQS) or its precursor, 2-heptyl-4-quinolone (HHQ), as the signal molecule. PQS can control specific life processes such as mediating quorum sensing, cytotoxicity, and iron acquisition. This review summarizes the biosynthesis of PCH and PQS, the shared transport system of PCH and PQS, and the regulatory relationship between PCH and PQS. The correlation between the PQS and PCH is emphasized to provide a new direction for future research.


Assuntos
Fenóis , Pseudomonas aeruginosa , Quinolonas , Percepção de Quorum , Tiazóis , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Tiazóis/metabolismo , Fenóis/metabolismo , Transdução de Sinais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Infecções por Pseudomonas/microbiologia , 4-Quinolonas/metabolismo
3.
Appl Microbiol Biotechnol ; 107(4): 1019-1038, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633626

RESUMO

Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.


Assuntos
Fibrose Cística , Sideróforos , Humanos , Pseudomonas aeruginosa , Virulência , Fibrose Cística/microbiologia , Ferro
4.
J Biol Inorg Chem ; 27(6): 541-551, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513576

RESUMO

Pseudomonas aeruginosa is an increasingly antibiotic-resistant pathogen that causes severe lung infections, burn wound infections, and diabetic foot infections. P. aeruginosa produces the siderophore pyochelin through the use of a non-ribosomal peptide synthetase (NRPS) biosynthetic pathway. Targeting members of siderophore NRPS proteins is one avenue currently under investigation for the development of new antibiotics against antibiotic-resistant organisms. Here, the crystal structure of the pyochelin adenylation domain PchD is reported. The structure was solved to 2.11 Å when co-crystallized with the adenylation inhibitor 5'-O-(N-salicylsulfamoyl)adenosine (salicyl-AMS) and to 1.69 Å with a modified version of salicyl-AMS designed to target an active site cysteine (4-cyano-salicyl-AMS). In the structures, PchD adopts the adenylation conformation, similar to that reported for AB3403 from Acinetobacter baumannii.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fenóis , Pseudomonas aeruginosa/metabolismo , Salicilatos/metabolismo , Sideróforos/química , Tiazóis
5.
Adv Exp Med Biol ; 1386: 29-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258068

RESUMO

Pseudomonas aeruginosa causes a wide array of life-threatening acute and chronic infections in humans. This opportunistic pathogen is metabolically highly versatile and harbors multiple virulence factors that allow infection of essentially any organ of the human body. The high capacity of this bacterium to acquire iron facilitates its versatility and is considered one of the P. aeruginosa virulence hallmarks. Iron functions as a redox cofactor of enzymes required for vital biological processes and is thus essential for all living organisms. However, in aerobic environments, iron is mainly present in its ferric form, which is insoluble and poorly bioavailable. This problem increases in the human body because, as a reaction to the infection, the host induces a "nutritional immunity" response aiming to reduce the amount of iron available for invading microorganisms. P. aeruginosa contains several mechanisms for iron acquisition including (1) production of siderophores pyoverdine and pyochelin; (2) use of xenosiderophores produced by other microorganisms; (3) direct transport of ferrous ions; and (4) utilization of host iron carriers (e.g., heme). However, although essential, iron results toxic when present in excess because it facilitates the production of reactive oxygen species (ROS) that damage bacterial cells. P. aeruginosa contains ferritins and efflux systems for iron withdrawal to avoid excess of this metal. Production of iron acquisition and removal systems is highly regulated to ensure sufficient iron for metabolic needs while preventing its toxicity. This chapter covers the different mechanisms used by P. aeruginosa to maintain iron homeostasis, which is vital for this pathogen to grow and proliferate in the host. We also highlight current strategies to block P. aeruginosa infections by disrupting iron homeostasis.


Assuntos
Anti-Infecciosos , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , Sideróforos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Homeostase , Fatores de Virulência/metabolismo , Heme , Antibacterianos , Ferritinas/metabolismo , Íons , Proteínas de Bactérias/metabolismo
6.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808191

RESUMO

Pseudomonas aeruginosa is a ubiquitously distributed soil and water bacterium and is considered an opportunistic pathogen in hospitals. In cystic fibrosis patients, for example, infections with P. aeruginosa can be severe and often lead to chronic or even fatal pneumonia. Therefore, rapid detection and further identification are of major importance in hospital hygiene and infection control. This work shows the electrochemical properties of five P. aeruginosa key metabolites considering their potential use as specific signaling agents in an electrochemical sensor system. The pure solutes of pyocyanin (PYO), Pseudomonas quinolone signal (PQS), pyochelin (PCH), 2-heptyl-4-hydroxyquinoline (HHQ), and 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) were analyzed by different electrochemical techniques (cyclic and square wave voltammetry) and measured using a Gamry Reference 600+ potentiostat. Screen-printed electrodes (DropSens DRP110; carbon working and counter, silver reference electrode) were used to determine signal specificities, detection limits, as well as pH dependencies of the substances. All of the compounds were electrochemically inducible with well-separated oxidation and/or reduction peaks at specific peak potentials relative to the reference electrode. Additionally, all analytes exhibited linear concentration dependency in ranges classically reported in the literature. The demonstration of these properties is a promising step toward direct multiplexed detection of P. aeruginosa in environmental and clinical samples and thus, can make a significant contribution to public health and safety.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Fibrose Cística/microbiologia , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Pseudomonas aeruginosa/química , Piocianina
7.
Biometals ; 34(5): 1099-1119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357504

RESUMO

FptA is a TonB-dependent transporter that permits the high affinity binding and transport of Fe(III)-pyochelin complex across the outer membrane of Pseudomonas aeruginosa. Molecular dynamics simulations were employed to FptA receptor and its complexes with pyochelin, and co-crystallized Fe(III)-pyochelin-ethanediol and Fe(III)-pyochelin-water embedded in dilauroyl phosphatidyl choline bilayer for the evaluation of their structural and dynamical properties. The evaluation of properties of the receptor bound to pyochelin molecule and Fe(III)-pyochelin complexes helped to figure out the iron coordination effect on the receptor properties. Moreover, comparison of these four simulation systems revealed further information on the dynamical changes occurred in extracellular loops, in particular loop-7 corresponding to the missing amino acid residues including the close-by loop-8 that was largely affected by the metal coordination to pyochelin. The binding of iron to pyochelin molecule affected the overall structure of the receptor therefore, evaluation fo the gyration radii and hydrogen bonding were evaluated as well as analysis of the pore size were also carried out to understand the effect of metal coordination on the dynamics of the helices which form a kind of translocation channel to transport the siderophore across the FptA protein into the periplasmic space. The properties of each component of the molecular systems were therefore observed to be perturbed by the incorporation of iron to the pyochelin molecule thus demonstrating that the bacteria use its receptor to abstract and transport iron from extracellular environment for its survival and that was made possible to understand at the molecular level through successful implementation of molecular dynamics simulations.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Proteínas da Membrana Bacteriana Externa/química , Ferro/metabolismo , Simulação de Dinâmica Molecular , Fenóis , Receptores de Superfície Celular/química , Sideróforos/química , Tiazóis
8.
Drug Dev Res ; 82(4): 605-615, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398901

RESUMO

In this article, we report the chemical synthesis of pyochelin-zingerone conjugate via a hydrolysable ester linkage for drug delivery as a "Trojan Horse Strategy." It is a new therapeutic approach to combat microbial infection and to address the issue of multi drug resistance in Gram-negative, nosocomial pathogen Pseudomonas aeruginosa. Pyochelin (Pch) is a catecholate type of phenolate siderophore produced and utilized by the pathogen P. aeruginosa to assimilate iron when colonizing the vertebrate host. Zingerone, is active component present in ginger, a dietary herb known for its anti-virulent approach against P. aeruginosa. In the present study, zingerone was exploited to act as a good substitute for existing antibiotics, known to have developed resistance by most pathogens. Encouraging results were obtained by docking analysis of pyochelin-zingerone conjugate with FptA, the outer membrane receptor of pyochelin. Conjugate also showed anti-quorum sensing activity and also inhibited swimming, swarming, and twitching motilities as well as biofilm formation in vitro.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Guaiacol/análogos & derivados , Fenóis/farmacologia , Tiazóis/farmacologia , Biofilmes/efeitos dos fármacos , Desenho de Fármacos , Farmacorresistência Bacteriana , Guaiacol/química , Guaiacol/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum , Tiazóis/química
9.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31792010

RESUMO

Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureusin vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner.IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


Assuntos
Alginatos/metabolismo , Fibrose Cística/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Biofilmes , Coinfecção/microbiologia , Humanos , Interações Microbianas , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética
10.
J Evol Biol ; 33(9): 1245-1255, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946129

RESUMO

Cooperation can be favoured through the green-beard mechanism, where a set of linked genes encodes both a cooperative trait and a phenotypic marker (green beard), which allows carriers of the trait to selectively direct cooperative acts to other carriers. In theory, the green-beard mechanism should favour cooperation even when interacting partners are totally unrelated at the genome level. Here, we explore such an extreme green-beard scenario between two unrelated bacterial species-Pseudomonas aeruginosa and Burkholderia cenocepacia, which share a cooperative locus encoding the public good pyochelin (an iron-scavenging siderophore) and its cognate receptor (green beard) required for iron-pyochelin uptake. We show that pyochelin, when provided in cell-free supernatants, can be mutually exchanged between species and provide fitness benefits under iron limitation. However, in co-culture we observed that these cooperative benefits vanished and communities were dominated by P. aeruginosa, regardless of strain background and species starting frequencies. Our results further suggest that P. aeruginosa engages in interference competition to suppress B. cenocepacia, indicating that inter-species conflict arising from dissimilarities at the genome level overrule the aligned cooperative interests at the pyochelin locus. Thus, green-beard cooperation is subdued by competition, indicating that interspecific siderophore cooperation is difficult to evolve and to be maintained.


Assuntos
Burkholderia cenocepacia/fisiologia , Interações Microbianas , Fenóis/metabolismo , Pseudomonas aeruginosa/fisiologia , Tiazóis/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Biológica , Genoma Bacteriano , Receptores de Superfície Celular/metabolismo
11.
J Proteome Res ; 17(11): 3837-3852, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30229651

RESUMO

Streptomyces scabies is responsible for common scab disease on root and tuber vegetables. Production of its main phytotoxin thaxtomin A is triggered upon transport of cellulose byproducts cellotriose and cellobiose, which disable the repression of the thaxtomin biosynthesis activator gene txtR by the cellulose utilization regulator CebR. To assess the intracellular response under conditions where S. scabies develops a virulent behavior, we performed a comparative proteomic analysis of wild-type S. scabies 87-22 and its cebR null mutant (hyper-virulent phenotype) grown in the absence or presence of cellobiose. Our study revealed significant changes in abundance of proteins belonging to metabolic pathways known or predicted to be involved in pathogenicity of S. scabies. Among these, we identified proteins of the cello-oligosaccharide-mediated induction of thaxtomin production, the starch utilization system required for utilization of the carbohydrate stored in S. scabies's hosts, and siderophore synthesis utilization systems, which are key features of pathogens to acquire iron once they colonized the host. Thus, proteomic analysis supported by targeted mass spectrometry-based metabolite quantitative analysis revealed the central role of CebR as a regulator of virulence of S. scabies.


Assuntos
Proteínas de Bactérias/genética , Celobiose/farmacologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Piperazinas/metabolismo , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Eletroforese em Gel Bidimensional , Ontologia Genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Proteômica/métodos , Sideróforos/biossíntese , Sideróforos/isolamento & purificação , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Streptomyces/patogenicidade , Espectrometria de Massas em Tandem , Virulência
12.
J Bacteriol ; 199(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847923

RESUMO

In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s).IMPORTANCE Members of the ferric uptake regulator (Fur) protein family are bacterial transcriptional repressors that control iron uptake and storage in response to iron availability, thereby playing a crucial role in the maintenance of iron homeostasis. While fur null mutants of many bacteria have been obtained, Fur appears to be essential in Pseudomonas aeruginosa for still unknown reasons. We obtained Fur-depleted P. aeruginosa cells by conditional mutagenesis and showed that Fur is dispensable for planktonic growth, while it is required for colony formation. This is because Fur protects P. aeruginosa colonies from toxicity exerted by the pyochelin siderophore. This work provides a functional basis to the essentiality of Fur in P. aeruginosa and highlights unique properties of the Fur regulon in this species.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Biofilmes/crescimento & desenvolvimento , Meios de Cultura/química , Mutagênese , Mutação , Fenóis/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sideróforos/metabolismo , Tiazóis/metabolismo , Virulência
13.
Bioorg Med Chem Lett ; 27(21): 4867-4870, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947150

RESUMO

Pseudomonas aeruginosa is a Gram-negative pathogenic bacterium responsible for severe infections, and it is naturally resistant to many clinically approved antibiotic families. Oxazolidinone antibiotics are active against many Gram-positive bacteria, but are inactive against P. aeruginosa. Increasing the uptake of oxazolidinones through the bacterial envelope could lead to an increased antibiotic effect. Pyochelin is a siderophore of P. aeruginosa which delivers external iron to the bacterial cytoplasm and is a potential vector for the development of Trojan Horse oxazolidinone conjugates. Novel pyochelin-oxazolidinone conjugates were synthesized using an unexpectedly regioselective peptide coupling between an amine functionalized pyochelin and oxazolidinones functionalized with a terminal carboxylate.


Assuntos
Antibacterianos/síntese química , Oxazolidinonas/química , Fenóis/química , Tiazóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Sideróforos/síntese química , Sideróforos/química , Sideróforos/farmacologia
14.
Bioorg Med Chem Lett ; 24(1): 132-5, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332092

RESUMO

Pyochelin is a siderophore common to all strains of Pseudomonas aeruginosa utilized by this Gram-negative bacterium to acquire iron(III). FptA is the outer membrane transporter responsible of ferric-pyochelin uptake in P. aeruginosa. We describe in this Letter the synthesis and the biological properties ((55)Fe uptake, binding to FptA) of several thiazole analogues of pyochelin. Among them we report in this Letter the two first pyochelin analogues able to bind FptA without promoting any iron uptake in P. aeruginosa.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Fenóis/química , Pseudomonas aeruginosa/química , Receptores de Superfície Celular/química , Sideróforos/síntese química , Tiazóis/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Ferro/química , Ferro/metabolismo , Estrutura Molecular , Fenóis/síntese química , Fenóis/metabolismo , Receptores de Superfície Celular/metabolismo , Sideróforos/química , Sideróforos/metabolismo , Tiazóis/síntese química , Tiazóis/metabolismo
15.
Res Microbiol ; 175(7): 104211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38734157

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.


Assuntos
Ferro , Pseudomonas aeruginosa , Sideróforos , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Animais , Humanos , Ferro/metabolismo , Fungos/metabolismo , Fungos/genética , Oligopeptídeos/metabolismo , Plantas/microbiologia , Fenóis/metabolismo , Fatores de Virulência/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Tiazóis/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Infecções por Pseudomonas/microbiologia , Proteínas da Membrana Bacteriana Externa
16.
Microbiol Spectr ; 12(2): e0325623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38171001

RESUMO

Bacteria absorb different forms of iron through various channels to meet their needs. Our previous studies have shown that TseF, a type VI secretion system effector for Fe uptake, facilitates the delivery of outer membrane vesicle-associated Pseudomonas quinolone signal (PQS)-Fe3+ to bacterial cells by a process involving the Fe(III) pyochelin receptor FptA and the porin OprF. However, the form in which the PQS-Fe3+ complex enters the periplasm and how it is moved into the cytoplasm remain unclear. Here, we first demonstrate that the PQS-Fe3+ complex enters the cell directly through FptA or OprF. Next, we show that inner membrane transporters such as FptX, PchHI, and FepBCDG are not only necessary for Pseudomonas aeruginosa to absorb PQS-Fe3+ and pyochelin (PCH)-Fe3+ but are also necessary for the virulence of P. aeruginosa toward Galleria mellonella larvae. Furthermore, we suggest that the function of PQS-Fe3+ (but not PQS)-mediated quorum-sensing regulation is dependent on FptX, PchHI, and FepBCDG. Additionally, the findings indicate that unlike FptX, neither FepBCDG nor PchHI play roles in the autoregulatory loop involving PchR, but further deletion of fepBCDG and pchHI can reverse the inactive PchR phenotype caused by fptX deletion and reactivate the expression of the PCH pathway genes under iron-limited conditions. Finally, this work identifies the interaction between FptX, PchHI, and FepBCDG, indicating that a larger complex could be formed to mediate the uptake of PQS-Fe3+ and PCH-Fe3+. These results pave the way for a better understanding of the PQS and PCH iron absorption pathways and provide future directions for research on tackling P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa has evolved a number of strategies to acquire the iron it needs from its host, with the most common being the synthesis, secretion, and uptake of siderophores such as pyoverdine, pyochelin, and the quorum-sensing signaling molecule Pseudomonas quinolone signal (PQS). However, despite intensive studies of the siderophore uptake pathways of P. aeruginosa, our understanding of how siderophores transport iron across the inner membrane into the cytoplasm is still incomplete. Herein, we reveal that PQS and pyochelin in P. aeruginosa share inner membrane transporters such as FptX, PchHI, and FepBCDG to mediate iron uptake. Meanwhile, PQS and pyochelin-mediated signaling operate to a large extent via these inner membrane transporters. Our study revealed the existence of shared uptake pathways between PQS and pyochelin, which could lead us to reexamine the role of these two molecules in the iron uptake and virulence of P. aeruginosa.


Assuntos
Ferro , Fenóis , Pseudomonas aeruginosa , Quinolonas , Tiazóis , Ferro/metabolismo , Pseudomonas aeruginosa/genética , Proteínas de Membrana Transportadoras/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Sideróforos/metabolismo , Proteínas de Bactérias/metabolismo
17.
Microbiol Spectr ; 12(3): e0369323, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311809

RESUMO

The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE: Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.


Assuntos
Fibrose Cística , Fenóis , Infecções por Pseudomonas , Tiazóis , Humanos , Animais , Camundongos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Ferro/metabolismo , Meios de Cultivo Condicionados/metabolismo , Fibrose Cística/microbiologia , Quelantes de Ferro , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mamíferos
18.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672503

RESUMO

The emergence of multidrug-resistant (MDR) microorganisms combined with the ever-draining antibiotic pipeline poses a disturbing and immensely growing public health challenge that requires a multidisciplinary approach and the application of novel therapies aimed at unconventional targets and/or applying innovative drug formulations. Hence, bacterial iron acquisition systems and bacterial Fe2+/3+-containing enzymes have been identified as a plausible target of great potential. The intriguing "Trojan horse" approach deprives microorganisms from the essential iron. Recently, gallium's potential in medicine as an iron mimicry species has attracted vast attention. Different Ga3+ formulations exhibit diverse effects upon entering the cell and thus supposedly have multiple targets. The aim of the current study is to specifically distinguish characteristics of great significance in regard to the initial gallium-based complex, allowing the alien cation to effectively compete with the native ferric ion for binding the siderophores pyochelin and pyoverdine secreted by the bacterium P. aeruginosa. Therefore, three gallium-based formulations were taken into consideration: the first-generation gallium nitrate, Ga(NO3)3, metabolized to Ga3+-hydrated forms, the second-generation gallium maltolate (tris(3-hydroxy-2-methyl-4-pyronato)gallium), and the experimentally proven Ga carrier in the bloodstream-the protein transferrin. We employed a reliable in silico approach based on DFT computations in order to understand the underlying biochemical processes that govern the Ga3+/Fe3+ rivalry for binding the two bacterial siderophores.


Assuntos
Antibacterianos , Gálio , Ferro , Compostos Organometálicos , Fenóis , Pseudomonas aeruginosa , Sideróforos , Gálio/química , Gálio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Ferro/metabolismo , Ferro/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Simulação por Computador , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Pironas/química , Pironas/metabolismo , Pironas/farmacologia
19.
mSphere ; 8(5): e0039223, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37800921

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small RNAs (sRNAs), which post-transcriptionally repress expression of nonessential iron-containing proteins, thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been extensively studied, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to the wild type, while the mRNAs for these proteins were not affected by the prrH mutation. We identified complementarity between the PrrH sRNA and the sequence upstream of the pchE mRNA, suggesting the potential for PrrH to directly regulate the expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered that controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function. IMPORTANCE In the human host, iron is predominantly in the form of heme, which Pseudomonas aeruginosa can acquire as an iron source during infection. We previously showed that the iron-responsive PrrF small RNAs (sRNAs) are critical for mediating iron homeostasis during P. aeruginosa infection; however, the function of the heme-responsive PrrH sRNA remains unclear. In this study, we identified genes for pyochelin siderophore biosynthesis, which mediates uptake of inorganic iron, as a novel target of PrrH regulation. This study therefore highlights a novel relationship between heme availability and siderophore biosynthesis in P. aeruginosa.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Humanos , Sideróforos/metabolismo , Heme/metabolismo , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , Expressão Gênica
20.
Cell Rep ; 42(6): 112540, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37227819

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are among the most frequently isolated bacterial species from polymicrobial infections of patients with cystic fibrosis and chronic wounds. We apply mass spectrometry guided interaction studies to determine how chemical interaction shapes the fitness and community structure during co-infection of these two pathogens. We demonstrate that S. aureus is equipped with an elegant mechanism to inactivate pyochelin via the yet uncharacterized methyltransferase Spm (staphylococcal pyochelin methyltransferase). Methylation of pyochelin abolishes the siderophore activity of pyochelin and significantly lowers pyochelin-mediated intracellular reactive oxygen species (ROS) production in S. aureus. In a murine wound co-infection model, an S. aureus mutant unable to methylate pyochelin shows significantly lower fitness compared with its parental strain. Thus, Spm-mediated pyochelin methylation is a mechanism to increase S. aureus survival during in vivo competition with P. aeruginosa.


Assuntos
Coinfecção , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/metabolismo , Coinfecção/microbiologia , Infecções Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA