Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(20): e2122952119, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561215

RESUMO

SignificanceQuantum anomalous Hall effect (QAHE) and magnetic skyrmion (SK), as two typical topological states in momentum (K) and real (R) spaces, attract much interest in condensed matter physics. However, the interplay between these two states remains to be explored. We propose that the interplay between QAHE and SK may generate an RK joint topological skyrmion (RK-SK), characterized by the SK surrounded by nontrivial chiral boundary states (CBSs). Furthermore, the emerging external field-tunable CBS in RK-SK could create additional degrees of freedom for SK manipulations, beyond the traditional SK. Meanwhile, external field can realize a rare topological phase transition between K and R spaces. Our work opens avenues for exploring unconventional quantum states and topological phase transitions in different spaces.

2.
Nano Lett ; 24(23): 6974-6980, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829211

RESUMO

The plateau phase transition in quantum anomalous Hall (QAH) insulators corresponds to a quantum state wherein a single magnetic domain gives way to multiple domains and then reconverges back to a single magnetic domain. The layer structure of the sample provides an external knob for adjusting the Chern number C of the QAH insulators. Here, we employ molecular beam epitaxy to grow magnetic topological insulator multilayers and realize the magnetic field-driven plateau phase transition between two QAH states with odd Chern number change ΔC. We find that critical exponents extracted for the plateau phase transitions with ΔC = 1 and ΔC = 3 in QAH insulators are nearly identical. We construct a four-layer Chalker-Coddington network model to understand the consistent critical exponents for the plateau phase transitions with ΔC = 1 and ΔC = 3. This work will motivate further investigations into the critical behaviors of plateau phase transitions with different ΔC in QAH insulators.

3.
Nano Lett ; 23(3): 1093-1099, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715442

RESUMO

The quantum anomalous Hall (QAH) insulator carries dissipation-free chiral edge current and thus provides a unique opportunity to develop energy-efficient transformative information technology. Despite promising advances, the QAH insulator has thus far eluded any practical applications. In addition to its low working temperature, the QAH state in magnetically doped topological insulators usually deteriorates with time in ambient conditions. In this work, we store three QAH devices with similar initial properties in different environments. The QAH device without a protection layer in air shows clear degradation and becomes hole-doped. The QAH device kept in an argon glovebox without a protection layer shows no measurable degradation after 560 h, and the device protected by a 3 nm AlOx protection layer in air shows minimal degradation with stable QAH properties. Our work shows a route to preserve the dissipation-free chiral edge state in QAH devices for potential applications in quantum information technology.

4.
Nano Lett ; 20(10): 7186-7192, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32930599

RESUMO

We propose a new strategy to engineer topological and magnetic properties of two-dimensional (2D) hexagonal lattices consisting of post-transition metals. Our first-principles calculations demonstrate that substrates serve as templates to form 2D lattices with high thermodynamic stability, where their topological properties as well as magnetic properties sensitively change as a function of lattice constants, i.e., the system undergoes a first-order phase transition from nonmagnetic to ferromagnetic state above a critical lattice constant. Consequently, substrates can be used to explore versatile magnetic, electronic, and quantum topological properties. We establish phase diagrams of versatile quantum phases in terms of exchange coupling and spin-orbit coupling effectively tuned by the lattice constants. We further reveal the first room-temperature quantum anomalous Hall (QAH) effect, i.e., Sn on 2√3 × 2√3 graphane is a QAH insulator with a large spin-orbit coupling gap of ∼0.2 eV and a Curie temperature of ∼380 K by using the 2D anisotropic Heisenberg model.

5.
J Phys Condens Matter ; 36(37)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38815601

RESUMO

Topological insulator (TIs), a novel quantum state of materials, has a lot of significance in the development of low-power electronic equipments as the conducting edge states display exceptional endurance against back-scattering. The absence of suitable materials with high fabrication feasibility and significant nontrivial bandgap, is now the biggest hurdle in their potential applications in devices. Here, we illustrate using first principles density functional calculations that the quintuplet layers of EuMg2Bi2and YbMg2Bi2crystals are potential two-dimensional TIs with a sizeable nontrivial gaps of 72 meV and 147 meV respectively. Dynamical stability of these quintuplet layers of EuMg2Bi2and YbMg2Bi2is confirmed by our phonon calculations. The weakly coupled layered structure of parent compounds makes it possible for simple exfoliation from a three-dimensional structure. We observed gapless edge states inside the bulk band gap in both the systems which indicate their TI nature. Further, we observed the anomalous and spin Hall conductivities to be quantized in two dimensional EuMg2Bi2and YbMg2Bi2respectively. Our findings predict two viable candidate materials as two dimensional quantum TIs which can be explored by future experimental investigations and possible applications of quantized spin and anomalous Hall conductance in spintronics.

6.
Adv Mater ; 36(13): e2310249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118065

RESUMO

Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well-quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well-quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred-nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law.

7.
ACS Nano ; 15(8): 13444-13452, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34387086

RESUMO

Intrinsic magnetic topological insulators offer low disorder and large magnetic band gaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the quantum anomalous Hall (QAH) effect and axion insulator phases have been realized. These observations occur at temperatures significantly lower than the Néel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultrathin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verification of a temperature-dependent topological phase transition from a large band gap QAH insulator to a gapless TI paramagnetic phase. Here we utilize temperature-dependent angle-resolved photoemission spectroscopy to study epitaxial ultrathin MnBi2Te4. We directly observe a layer-dependent crossover from a 2D ferromagnetic insulator with a band gap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>70 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it becomes gapless with increasing temperature above 8 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA