Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107320, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569323

RESUMO

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Assuntos
Interleucina-4 , Mastócitos , Camundongos , Animais , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Mastócitos/metabolismo , Anafilaxia Cutânea Passiva , Simulação de Acoplamento Molecular , Imunoglobulina E/metabolismo , Imunoglobulina E/farmacologia , Camundongos Endogâmicos ICR , Camundongos Endogâmicos BALB C
2.
Cancer Cell Int ; 23(1): 325, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104117

RESUMO

BACKGROUND: Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. METHODS: The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis RESULTS: TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. CONCLUSIONS: The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma.

3.
J Clin Pediatr Dent ; 46(1): 24-29, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311974

RESUMO

OBJECTIVE: The aim of this study was to evaluate the effect of finishing and polishing procedures of compomer and bulk-fill composite resins on cytotoxicity against human gingival fibroblasts by xCELLigence analysis. STUDY DESIGN: Filtek™ Bulk Fill composite and Dyract XP compomer were used. After curing, the specimens were randomly divided into two groups and finishing-polishing procedures were applied to one group; no finishing-polishing procedures were applied to the other group. For the first time in this study, pure gold samples were prepared with the same weight and base area as the test specimens and the wells containing the pure gold samples were determined as the control group. xCELLigence system was used to assess the response of the human gingival fibroblasts after exposure to test specimens. Measurements were recorded for 72 hours after adding specimens. RESULTS: Finishing and polishing procedures caused a significant increase in cell viability of Dyract XP compomer samples at all time periods; the percentage of cell viability reached above 70% after finishing and polishing procedures. However, significant effects were not observed in Filtek™ Bulk Fill composite samples at any time period. CONCLUSION: Finishing and polishing procedures play an essential role in increasing the biocompatibility of Dyract XP compomer. It is recommended to apply finishing and polishing procedures even though a smooth surface may be obtained in restorations with matrix strips.


Assuntos
Materiais Dentários , Polimento Dentário , Resinas Compostas/toxicidade , Materiais Dentários/toxicidade , Polimento Dentário/métodos , Humanos , Propriedades de Superfície
4.
J Environ Sci (China) ; 117: 222-231, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725074

RESUMO

Chlorine, chlorine dioxide, and ozone are widely used as disinfectants in drinking water treatments. However, the combined use of different disinfectants can result in the formation of various organic and inorganic disinfection byproducts (DBPs). The toxic interactions, including synergism, addition, and antagonism, among the complex DBPs are still unclear. In this study, we established and verified a real-time cell analysis (RTCA) method for cytotoxicity measurement on Chinese hamster ovary (CHO) cell. Using this convenient and accurate method, we assessed the cytotoxicity of a series of binary combinations consisting of one of the 3 inorganic DBPs (chlorite, chlorate, and bromate) and one of the 32 regulated and emerging organic DBPs. The combination index (CI) of each combination was calculated and evaluated by isobolographic analysis to reflect the toxic interactions. The results confirmed the synergistic effect on cytotoxicity in the binary combinations consisting of chlorite and one of the 5 organic DBPs (2 iodinated DBPs (I-DBPs) and 3 brominated DBPs (Br-DBPs)), chlorate and one of the 4 organic DBPs (3 aromatic DBPs and dibromoacetonitrile), and bromate and one of the 3 organic DBPs (2 I-DBPs and dibromoacetic acid). The possible synergism mechanism of organic DBPs on the inorganic ones may be attributed to the influence of organic DBPs on cell membrane and cell antioxidant system. This study revealed the toxic interactions among organic and inorganic DBPs, and emphasized the latent adverse outcomes in the combined use of different disinfectants.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Animais , Bromatos , Células CHO , Cloratos , Cricetinae , Cricetulus , Desinfetantes/análise , Desinfetantes/toxicidade , Desinfecção , Poluentes Químicos da Água/análise
5.
Int J Toxicol ; 39(3): 218-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32228215

RESUMO

The semiconductor manufacturing sector plans to introduce III/V film structures (eg, gallium arsenide (GaAs), indium arsenide (InAs) onto silicon wafers due to their high electron mobility and low power consumption. Aqueous solutions generated during chemical and mechanical planarization of silicon wafers can contain a mixture of metal oxide nanoparticles (NPs) and soluble indium, gallium, and arsenic. In this work, the cytotoxicity induced by Ga- and In-based NPs (GaAs, InAs, Ga2O3, In2O3) and soluble III-V salts on human bronchial epithelial cells (16HBE14o-) was evaluated using a cell impedance real-time cell analysis (RTCA) system. The RTCA system provided inhibition data at different concentrations for multiple time points, for example, GaAs (25 mg/L) caused 60% inhibition after 8 hours of exposure and 100% growth inhibition after 24 hours. Direct testing of As(III) and As(V) demonstrated significant cytotoxicity with 50% growth inhibition concentrations after 16-hour exposure (IC50) of 2.4 and 4.5 mg/L, respectively. Cell signaling with rapid rise and decrease in signal was unique to arsenic cytotoxicity, a precursor of strong cytotoxicity over the longer term. In contrast with arsenic, soluble gallium(III) and indium(III) were less toxic. Whereas the oxide NPs caused low cytotoxicity, the arsenide compounds were highly inhibitory (IC50 of GaAs and InAs = 6.2 and 68 mg/L, respectively). Dissolution experiments over 7 days revealed that arsenic was fully leached from GaAs NPs, whereas only 10% of the arsenic was leached out of InAs NPs. These results indicate that the cytotoxicity of GaAs and InAs NPs is largely due to the dissolution of toxic arsenic species.


Assuntos
Células Epiteliais/efeitos dos fármacos , Gálio/toxicidade , Índio/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Arsenicais/química , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Impedância Elétrica , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Gálio/química , Humanos , Índio/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão
6.
Int J Med Sci ; 13(9): 708-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648001

RESUMO

Real-time screening of cellular response on the drugs could provide valuable insights for the early detection of therapeutic efficiency and the evaluation of disease progression. Cancer cells have the ability to vary widely in response to stress in a manner to adjust the signaling pathway to promote the survival or having a resistance to stimulation. Cell-based label-free technologies using electronic impedance sensor have strategies for constructing the signature profiles of each cells. To achieve exquisite sensitivity to substantially change of live-cell response have an important role that predict the potential of therapeutic effects. In this study, we use an impedance-based real-time cell analysis system to investigate dynamic phenotypes of cells described as a cellular index value. We show that gastric cancer cells generated characteristic kinetic patterns that corresponded to the treatment order of therapeutics. The kinetic feature of the cells offers insightful information that cannot be acquired from a conventional single end-point assay. Furthermore, we employ a 'sequential treatment strategy' to increase cytotoxic effects with minimizing the use of chemotherapeutics. Specifically, treatment of paclitaxel (PTX) after down-regulating Akt gene expression using RNAi reduces the cell proliferation and increases apoptosis. We propose that the sequential treatment may exhibit more effective approach rather than traditional combination therapy. Moreover, the dynamic monitoring of cell-drug interaction enables us to obtain a better understanding of the temporal effects in vitro.


Assuntos
Proliferação de Células/efeitos dos fármacos , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/biossíntese , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Interferente Pequeno/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
7.
Biochim Biophys Acta ; 1832(12): 2340-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080196

RESUMO

Cystic fibrosis (CF) airway epithelium is constantly subjected to injury events due to chronic infection and inflammation. Moreover, abnormalities in CF airway epithelium repair have been described and contribute to the lung function decline seen in CF patients. In the last past years, it has been proposed that anoctamin 1 (ANO1), a Ca(2+)-activated Cl(-) channel, might offset the CFTR deficiency but this protein has not been characterized in CF airways. Interestingly, recent evidence indicates a role for ANO1 in cell proliferation and tumor growth. Our aims were to study non-CF and CF bronchial epithelial repair and to determine whether ANO1 is involved in airway epithelial repair. Here, we showed, with human bronchial epithelial cell lines and primary cells, that both cell proliferation and migration during epithelial repair are delayed in CF compared to non-CF cells. We then demonstrated that ANO1 Cl(-) channel activity was significantly decreased in CF versus non-CF cells. To explain this decreased Cl(-) channel activity in CF context, we compared ANO1 expression in non-CF vs. CF bronchial epithelial cell lines and primary cells, in lung explants from wild-type vs. F508del mice and non-CF vs. CF patients. In all these models, ANO1 expression was markedly lower in CF compared to non-CF. Finally, we established that ANO1 inhibition or overexpression was associated respectively with decreases and increases in cell proliferation and migration. In summary, our study demonstrates involvement of ANO1 decreased activity and expression in abnormal CF airway epithelial repair and suggests that ANO1 correction may improve this process.


Assuntos
Brônquios/patologia , Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/patologia , Células Epiteliais/patologia , Pulmão/patologia , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/patologia , Adulto , Animais , Anoctamina-1 , Western Blotting , Brônquios/metabolismo , Estudos de Casos e Controles , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Canais de Cloreto/genética , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Técnicas Imunoenzimáticas , Canais Iônicos/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos CFTR , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Int J Med Sci ; 11(3): 298-308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516355

RESUMO

BACKGROUND: We evaluated the effects of fibronectin, collagen, cadherin, and laminin based extracellular matrix (ECM) protein mimetics coated with mussel derived adhesive protein (MAP) on adhesion and proliferation of chorionic mesenchymal stem cells (cMSCs). METHODS: Human placental chorionic tissues from term third-trimester pregnancies (n=3) were used. The cMSCs were cultured on rationally designed ECM protein mimetics coated with MAP on plastic surfaces with the addition of reduced fetal bovine serum (0.5%, 1% FBS). Adhesion capabilities were monitored by a real time cell analysis system (RTCA) utilizing an impedance method. Proliferation capabilities were monitored by RTCA and MTS assay. RESULTS: Of the ECM protein mimetics tested, GRGDSP(FN) coated surfaces exhibited the highest adhesion and proliferation capabilities on RTCA at FBS concentration of 0.5% and 1%. When 0.5% FBS was added to ECM protein mimetics during the MTS assay, GRGDSP(FN), REDV(FN), and collagen mimetics, GPKGAAGEPGKP(ColI) showed higher cMSCs proliferation compared with the control. When 1% FBS was added, GRGDSP(FN) and TAIPSCPEGTVPLYS(ColIV) showed significant cMSCs proliferation capacity. CONCLUSIONS: Fibronectin mimetics, GRGDSP(FN) amino acid sequence showed the highest adhesion and proliferation capabilities. In addition, results from RTCA assessment of cell viability correlated well with the tetrazolium-based MTS assay.


Assuntos
Biomimética , Proteínas da Matriz Extracelular/administração & dosagem , Fibronectinas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Córion/citologia , Matriz Extracelular/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Gravidez
9.
Front Microbiol ; 15: 1348892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322317

RESUMO

Objectives: It is important to accurately discriminate between clinical Clostridioides difficile infection (CDI) and colonization (CDC) for effective antimicrobial treatment. Methods: In this study, 37 stool samples were collected from 17 CDC and 20 CDI cases, and each sample were tested in parallel through the real-time cell analysis (RTCA) system, real-time PCR assay (PCR), and enzyme-linked immunosorbent assay (ELISA). Results: RTCA-measured functional and toxical C. difficile toxin B (TcdB) concentrations in the CDI group (302.58 ± 119.15 ng/mL) were significantly higher than those in the CDC group (18.15 ± 11.81 ng/mL) (p = 0.0008). Conversely, ELISA results revealed no significant disparities in TcdB concentrations between the CDC (26.21 ± 3.57 ng/mL) and the CDI group (17.07 ± 3.10 ng/mL) (p = 0.064). PCR results indicated no significant differences in tcdB gene copies between the CDC (774.54 ± 357.89 copies/µL) and the CDI group (4,667.69 ± 3,069.87 copies/µL) (p = 0.407). Additionally, the functional and toxical TcdB concentrations secreted from C. difficile isolates were measured by the RTCA. The results from the CDC (490.00 ± 133.29 ng/mL) and the CDI group (439.82 ± 114.66 ng/mL) showed no significant difference (p = 0.448). Notably, RTCA-measured functional and toxical TcdB concentration was significantly decreased when mixed with pooled CDC samples supernatant (p = 0.030). Conclusion: This study explored the novel application of the RTCA assay in effectively discerning clinical CDI from CDC cases.

10.
Methods Cell Biol ; 183: 303-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548415

RESUMO

This chapter introduces four commonly used in vitro chimeric antigen receptor (CAR)-T cell cytotoxicity assays (lactate dehydrogenase release assay, 51Cr release assay, IncuCyte live cell killing assay, and xCELLigence real-time analysis) and provides a detailed protocol for xCELLigence real-time analysis. Focusing on in vitro assays, this chapter starts with explaining the mechanisms and discussing the utilization of each assay to quantify T-cell-induced cytotoxicity. Due to the high-throughput quantification and straightforward workflow of xCELLigence real-time analysis, a protocol entailing reagents and equipment, a 3-day step-by-step procedure, and instructions for data analysis are provided.


Assuntos
Apoptose , Linfócitos T , Linhagem Celular Tumoral
11.
Exp Neurol ; 380: 114919, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142370

RESUMO

Oxidative stress can impair the endothelial barrier and thereby enable autoantibody migration in Neuromyelitis optica spectrum disorder (NMOSD). Tissue-specific vulnerability to autoantibody-mediated damage could be explained by a differential, tissue-dependent endothelial susceptibility to oxidative stress. In this study, we aim to investigate the barrier integrity and complement profiles of brain and retinal endothelial cells under oxygen-induced oxidative stress to address the question of whether the pathomechanism of NMOSD preferentially affects the brain or the retina. Primary human brain microvascular endothelial cells (HBMEC) and primary human retinal endothelial cells (HREC) were cultivated at different cell densities (2.5*104 to 2*105 cells/cm2) for real-time cell analysis. Both cell types were exposed to 100, 500 and 2500 µM H2O2. Immunostaining (CD31, VE-cadherin, ZO-1) and Western blot, as well as complement protein secretion using multiplex ELISA were performed. HBMEC and HREC cell growth phases were cell type-specific. While HBMEC cell growth could be categorized into an initial peak, proliferation phase, plateau phase, and barrier breakdown phase, HREC showed no proliferation phase, but entered the plateau phase immediately after an initial peak. The plateau phase was 7 h shorter in HREC. Both cell types displayed a short-term, dose-dependent adaptive response to H2O2. Remarkably, at 100 µM H2O2, the transcellular resistance of HBMEC exceeded that of untreated cells. 500 µM H2O2 exerted a more disruptive effect on the HBMEC transcellular resistance than on HREC. Both cell types secreted complement factors H (FH) and I (FI), with FH secretion remaining stable after 2 h, but FI secretion decreasing at higher H2O2 concentrations. The observed differences in resistance to oxidative stress between primary brain and retinal endothelial cells may have implications for further studies of NMOSD and other autoimmune diseases affecting the eye and brain. These findings may open novel perspectives for the understanding and treatment of such diseases.


Assuntos
Encéfalo , Células Endoteliais , Peróxido de Hidrogênio , Estresse Oxidativo , Retina , Humanos , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Retina/metabolismo , Encéfalo/metabolismo , Peróxido de Hidrogênio/farmacologia , Células Cultivadas , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
12.
J Oral Microbiol ; 15(1): 2160536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36583208

RESUMO

Objective: To develop an in vitro model for real-time monitoring of endodontic biofilm growth and evaluate the ex vivo effect of antibiotics on biofilm growth. Material and Methods: Root canal samples were taken from 40 patients and inoculated into 96-well plates in a system that measures biofilm growth through electrical impedance. Biofilm bacterial composition at the genus and species level was analyzed by Illumina sequencing. ANCOM-BC corrected data were used to compare bacterial composition after antibiotic treatment through compositional analysis, and to compare microbiological with clinical data. Results: The stationary phase was reached at 8 hours. The biofilm formed had a similar bacterial composition to the inoculum, and Enterococcus faecalis was virtually absent from the samples. The bacterial composition and the effect of antibiotics were sample-dependent. Metronidazole was the antibiotic that most inhibited biofilm formation and azithromycin the one that inhibited it in the highest percentage of cases. The antibiotic effect could not be related to the biofilm original bacterial composition. Conclusions: The impedance system allowed real-time monitoring of endodontic biofilm formation, and we propose it as a model for ex vivo evaluation of the whole biofilm susceptibility to antimicrobials, as opposed to evaluating antibiotic sensitivity of specific bacterial isolates.

13.
Viruses ; 15(9)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37766343

RESUMO

The ability of each new SARS-CoV-2 variant to evade host humoral immunity is the focus of intense research. Each variant may also harbor unique replication capabilities relevant for disease and transmission. Here, we demonstrate a new approach to assessing viral replication kinetics using real-time cell analysis (RTCA). Virus-induced cell death is measured in real time as changes in electrical impedance through cell monolayers while images are acquired at defined intervals via an onboard microscope and camera. Using this system, we quantified replication kinetics of five clinically important viral variants: WA1/2020 (ancestral), Delta, and Omicron subvariants BA.1, BA.4, and BA.5. Multiple measures proved useful in variant replication comparisons, including the elapsed time to, and the slope at, the maximum rate of cell death. Important findings include significantly weaker replication kinetics of BA.1 by all measures, while BA.5 harbored replication kinetics at or near ancestral levels, suggesting evolution to regain replicative capacity, and both an altered profile of cell killing and enhanced fusogenicity of the Delta variant. Together, these data show that RTCA is a robust method to assess replicative capacity of any given SARS-CoV-2 variant rapidly and quantitatively, which may be useful in assessment of newly emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Morte Celular , Apoptose
14.
Mol Ther Oncolytics ; 24: 443-451, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35141400

RESUMO

Chimeric antigen receptor (CAR)-modified T cells have exhibited impressive anti-tumor effects in both B cell malignancies and some types of solid tumors. However, single-chain variable fragment (scFv) of a murine monoclonal antibody will induce immune responses, limit CAR-T cell persistence, and thus increase the risk of relapse. This study successfully constructed a CAR-targeting interleukin-13 receptor α2 (IL-13Rα2) according to a murine antibody, and then humanized the scFv sequence to generate another CAR. T cells expressing any of these two CARs demonstrated superior tumor inhibitory effects in vitro and in two xenograft mouse models. However, T cells transduced with humanized CAR have an increased expansion and reduced cytokines, including interleukin-6 and interferon-γ. The top expressed genes clustered in leukocyte-mediated cytotoxicity, and T cell migration and immunological synapse formation contributed to the anti-glioblastoma (GBM) activity of the humanized CAR. In conclusion, we successfully generated a humanized third-generation CAR-targeting IL-13Rα2 and confirmed its anti-GBM efficacy, which provide a candidate method for clinical GBM treatment.

15.
J Adv Res ; 35: 245-257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35024200

RESUMO

Introduction: The development of cancer generally occurs as a result of various deregulated molecular mechanisms affecting the genes that can control normal cellular growth. Signal transducer and activator of transcription 3 (STAT3) pathway, once aberrantly activated can promote carcinogenesis by regulating the transcription of a number of oncogenic genes. Objectives: Here, we evaluated the impact of fangchinoline (FCN) to attenuate tumor growth and survival through modulation of oncogenic STAT3 signaling pathway using diverse tumor cell lines and a xenograft mouse model. Methods: To evaluate the action of FCN on STAT3 cascade, protein levels were analyzed by Western blot analysis and electrophoretic mobility shift assay (EMSA). Translocation of STAT3 was detected by immunocytochemistry. Thereafter, FCN-induced ROS was measured by GSH/GSSG assay and H2DCF-DA. FCN-induced apoptosis was analyzed using Western blot analysis and flow cytometry for various assays. Finally, anti-cancer effects of FCN in vivo was evaluated in a myeloma model. Results: We noted that FCN abrogated protein expression levels of STAT3 and upstream signals (JAK1/2 and Src). In addition, FCN also attenuated DNA binding ability of STAT3 and its translocation into the nucleus. It altered the levels of upstream signaling proteins, increased SHP-1 levels, and induced substantial apoptosis in U266 cells. FCN also promoted an increased production of reactive oxygen species (ROS) and altered GSSG/GSH ratio in tumor cells. Moreover, FCN effectively abrogated tumor progression and STAT3 activation in a preclinical myeloma model. Conclusion: Overall, this study suggests that FCN may have a tremendous potential to alter abnormal STAT3 activation and induce cell death in malignant cells along with causing the suppression of pathogenesis and growth of cancer through a pro-oxidant dependent molecular mechanism.


Assuntos
Mieloma Múltiplo , Fator de Transcrição STAT3 , Animais , Benzilisoquinolinas , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Estresse Oxidativo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Fator de Transcrição STAT3/metabolismo
16.
Nanoscale Res Lett ; 16(1): 41, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33651267

RESUMO

Porphyrin iron molecules (hemin) were successfully grafted on the channeled mesoporous silica of SBA-15 (FeIX-SBA-15), in which attached hemin molecules acted as the enzyme mimic for catalyzing oxidation reactions. In the presence of H2O2, the prepared FeIX-SBA-15 composite effectively degraded industrial dye Orange II and catalyzed tetramethylbenzidine hydrochloride (TMB) both in the solution and on the membrane, from which the colorimetric H2O2 detection was achieved. Moreover, the hemin-grafted composites showed high loading content of anticancer drug of doxorubicin hydrochloride (DOX) displaying the sustained releasing behavior as monitored by real-time cell analysis, which resulted in improved inhibitory effect on cancer cells growth compared with that DOX/SBA-15. The hemin-modified mesoporous silica nanocomposite provides an integrated nanoplatform with promising biomedical applications.

17.
Access Microbiol ; 3(3): 000191, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34151150

RESUMO

Conventional cell-culture viral quantification methods, namely viral plaque and 50 % tissue culture infective dose assays, are time-consuming, subjective and are not suitable for routine testing. The viral plaque formation assay is the main method utilized for Rift Valley fever virus (RVFV) clone 13 quantification. The RVFV is a mosquito-borne RNA Phlebovirus belonging to the family Bunyaviridae. The virus comprises a single serotype and causes the zoonotic Rift Valley fever disease. The real-time cell analysis (RTCA) system has been developed for the monitoring of cell growth, cell adhesion, cell viability and mortality using electronic impedance technology. In this study, Vero cell growth kinetics and RVFV clone 13 replication kinetics were investigated in a roller bottle and RTCA systems. In roller bottles, Vero cell growth was measured by cell counts through trypan blue staining, whilst impedance expressed as the cell index (CI) was used for Vero growth measurement in the RTCA system. Similar growth patterns were observed in both roller bottle and RTCA systems. Exponential growth phase was observed between 48 and 100 h, followed by a stationary phase from 100 to 120 h, before cell death was observed. Viral plaque assay quantification of RVFV clone 13 in the roller bottle system and the time required for the CI to decrease 50 % after virus infection (CIT50) in the RTCA system were comparable. The highest RVFV clone 13 titre was obtained at 120 h in both roller bottle and RTCA systems. An increase in time for cytopathic effect (CPE) formation was observed with a decrease in the concentration of the virus used to infect the RTCA plates. A positive correlation was observed between the viral concentration and the time for a CPE and was used to calculate CIT50. A similar correlation was observed between the viral concentration and the time for a CPE in the roller bottle system. This study shows that the RTCA system can be used as an alternative method for conducting cell culture kinetics and viral quantification.

18.
Materials (Basel) ; 14(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300727

RESUMO

Cation-substituted hydroxyapatite (HA), standalone or as a composite (blended with polymers or metals), is currently regarded as a noteworthy candidate material for bone repair/regeneration either in the form of powders, porous scaffolds or coatings for endo-osseous dental and orthopaedic implants. As a response to the numerous contradictions reported in literature, this work presents, in one study, the physico-chemical properties and the cytocompatibility response of single cation-doped (Ce, Mg, Sr or Zn) HA nanopowders in a wide concentration range (0.5-5 at.%). The modification of composition, morphology, and structure was multiparametrically monitored via energy dispersive X-ray, X-ray photoelectron, Fourier-transform infrared and micro-Raman spectroscopy methods, as well as by transmission electron microscopy and X-ray diffraction. From a compositional point of view, Ce and Sr were well-incorporated in HA, while slight and pronounced deviations were observed for Mg and Zn, respectively. The change of the lattice parameters, crystallite size, and substituting cation occupation factors either in the Ca(I) or Ca(II) sites were further determined. Sr produced the most important HA structural changes. The in vitro biological performance was evaluated by the (i) determination of leached therapeutic cations (by inductively coupled plasma mass spectrometry) and (ii) assessment of cell behaviour by both conventional assays (e.g., proliferation-3-(4,5-dimethyl thiazol-2-yl) 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay; cytotoxicity-lactate dehydrogenase release assay) and, for the first time, real-time cell analysis (RTCA). Three cell lines were employed: fibroblast, osteoblast, and endothelial. When monophasic, the substituted HA supported the cells' viability and proliferation without signs of toxicity. The RTCA results indicate the excellent adherence of cells. The study strived to offer a perspective on the behaviour of Ce-, Mg-, Sr-, or Zn-substituted HAs and to deliver a well-encompassing viewpoint on their effects. This can be highly important for the future development of such bioceramics, paving the road toward the identification of candidates with highly promising therapeutic effects.

19.
Animals (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535698

RESUMO

This study describes a successful protocol for establishing cell lines from the threatened Triturus cristatus in terms of collection, preparing, establishing, cryopreserving, thawing and quality checking. Different parameters such as media, media change, fresh vs. cryopreserved tissue and seeding density were tested to optimize culture conditions for this species. With fresh tissue, no considerable differences in the use of two different media were found, but with cryopreserved tissue, a combination of ITS (insulin/transferrin/selenite) and 2-mercaptoethanol had a positive effect on growth. Real-time measurements on the cell lines were used, for the first time in amphibian cells, to investigate the effect of different treatments such as media change with or without washing. Media change had a positive impact on the cells, whereas the effect was negative when combined with washing. It is concluded that establishment of cell lines is possible from the great crested newt, especially when using fresh tissue, but much more challenging if the tissue has been cryopreserved. Real-time measurement during cell culture is a useful tool to visualize the sensitivity of amphibian cells during different culture treatments.

20.
Biotechniques ; 70(6): 319-326, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024160

RESUMO

Routine cell culture demands the use of animal-derived products, mainly fetal bovine serum and swine or bovine trypsin. According to the 3Rs principle and to the European Centre for the Validation of Alternative Methods, animal-free substitutes are strongly recommended for in vitro methods. In this study, the HEp-2 cell line was adapted to different totally animal-free culture systems, such as a serum-free complete medium (VP-SFM), human platelet lysate and a synthetic trypsin (TrypLE™ Express); afterward, cell growth was assessed with the xCELLigence instrument. Animal-free products provided promising results, with performances similar or preferable to the common reagents; therefore their use could be encouraged for both ethical and technical advantages.


Assuntos
Técnicas de Cultura de Células , Meios de Cultura Livres de Soro , Linhagem Celular , Proliferação de Células , Humanos , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA