Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2316971121, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809703

RESUMO

Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.


Assuntos
Secas , Chuva , Árvores , Clima Tropical , Árvores/fisiologia , Mudança Climática , Água/metabolismo , Plântula/genética , Plântula/fisiologia , Especificidade da Espécie , Florestas , Fluxo Gênico , Resistência à Seca
2.
New Phytol ; 243(6): 2146-2156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38736202

RESUMO

Unraveling the mechanisms of home-field advantage (HFA) is essential to gain a complete understanding of litter decomposition processes. However, knowledge of the relationships between HFA effects and microbial communities is lacking. To examine HFA effects on litter decomposition, we identified the microbial communities and conducted a reciprocal transplant experiment, including all possible combinations of soil and litter, between sites at two elevations in cool-temperate forests. Soil origin, rather than HFA, was an important factor in controlling litter decomposition processes. Microbiome-wide association analyses identified litter fungi and bacteria specific to the source soil, which completely differed at a low taxonomic level between litter types. The relative abundance of these microbes specific to source soil was positively correlated with litter mass loss. The results indicated that the unique relationships between plant litter and soil microbes through plant-soil linkages drive litter decomposition processes. In the short term, soil disturbances resulting from land-use changes have the potential to disrupt the effect of soil origin and hinder the advancement of litter decomposition. These findings contribute to an understanding of HFA mechanisms and the impacts of land-use change on decomposition processes in forest ecosystems.


Assuntos
Folhas de Planta , Microbiologia do Solo , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Fungos/fisiologia , Bactérias/metabolismo , Microbiota/fisiologia , Solo/química , Florestas
3.
Annu Rev Ecol Evol Syst ; 53(1): 87-111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37790997

RESUMO

Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and abiotic variables that promote local adaptation, and fewer yet have identified the phenotypic targets of selection that mediate local adaptation. Here, we highlight critical gaps in our understanding of the process of local adaptation and discuss insights emerging from in-depth investigations of the agents of selection that drive local adaptation, the phenotypes they target, and the genetic basis of these phenotypes. We review historical and contemporary methods for assessing local adaptation, explore whether local adaptation manifests differently across life history, and evaluate constraints on local adaptation.

4.
Glob Chang Biol ; 28(8): 2596-2610, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35007376

RESUMO

Environmental change is multidimensional, with local anthropogenic stressors and global climate change interacting to differentially impact populations throughout a species' geographic range. Within species, the spatial distribution of phenotypic variation and its causes (i.e., local adaptation or plasticity) will determine species' adaptive capacity to respond to a changing environment. However, comparatively less is known about the spatial scale of adaptive differentiation among populations and how patterns of local adaptation might drive vulnerability to global change stressors. To test whether fine-scale (2-12 km) mosaics of environmental stress can cause adaptive differentiation in a marine foundation species, eelgrass (Zostera marina), we conducted a three-way reciprocal transplant experiment spanning the length of Tomales Bay, CA. Our results revealed strong home-site advantage in growth and survival for all three populations. In subsequent common garden experiments and feeding assays, we showed that countergradients in temperature, light availability, and grazing pressure from an introduced herbivore contribute to differential performance among populations consistent with local adaptation. Our findings highlight how local-scale mosaics in environmental stressors can increase phenotypic variation among neighboring populations, potentially increasing species resilience to future global change. More specifically, we identified a range-center eelgrass population that is pre-adapted to extremely warm temperatures similar to those experienced by low-latitude range-edge populations of eelgrass, demonstrating how reservoirs of heat-tolerant phenotypes may already exist throughout a species range. Future work on predicting species resilience to global change should incorporate potential buffering effects of local-scale population differentiation and promote a phenotypic management approach to species conservation.


Assuntos
Aclimatação , Zosteraceae , Adaptação Fisiológica , Mudança Climática , Temperatura
5.
J Exp Zool B Mol Dev Evol ; 336(3): 239-249, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32291859

RESUMO

Modular organization provides flexibility for colonial animals to deal with variable and unpredictable environmental conditions since each module has specific tasks within the colony, such as feeding, defending or reproducing. Depending on the selecting pressures, sessile organisms may phenotypically adjust the morphology of each module or modify their density, increasing individual fitness. Here we used the marine bryozoan Schizoporella errata (Cheilostomata, Schizoporellidae) to test how the divergent conditions between two artificial habitats, the location inside a marina (IM) and the external wall of the breakwater (BW), affect colony size and the density of the distinct modules. The density of avicularia and ovicells, modules related to defense and reproduction, respectively, did not differ between habitats. However, colonies growing in the turbulent waters of BW were, in general, larger and had higher density of feeding autozooids than those at IM. Reciprocal transplants of bryozoan clones indicated that trait variation is genotype-dependent but varies according to the environmental conditions at the assigned location. The occurrence of larger colonies with more zooids in BW is probably linked to the easier feeding opportunity offered by the small diffusive boundary layer around the colony at this location. Since in colonial polymorphic organisms each module (zooid) performs a specific function, the phenotypic response is not uniform across colonies, affecting only those modules that are susceptible to variations in the main selective pressures. Understanding the importance of colony-level plasticity is relevant to predict how modularity will contribute to organisms to deal with human-induced environmental changes in coastal habitats.


Assuntos
Briozoários/anatomia & histologia , Ecossistema , Animais , Organismos Aquáticos , Briozoários/genética , Briozoários/crescimento & desenvolvimento , Briozoários/fisiologia
6.
J Evol Biol ; 34(8): 1225-1240, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097795

RESUMO

The process of local adaptation involves differential changes in fitness over time across different environments. Although experimental evolution studies have extensively tested for patterns of local adaptation at a single time point, there is relatively little research that examines fitness more than once during the time course of adaptation. We allowed replicate populations of the fruit pest Drosophila suzukii to evolve in one of eight different fruit media. After five generations, populations with the highest initial levels of maladaptation had mostly gone extinct, whereas experimental populations evolving on cherry, strawberry and cranberry media had survived. We measured the fitness of each surviving population in each of the three fruit media after five and after 26 generations of evolution. After five generations, adaptation to each medium was associated with increased fitness in the two other media. This was also true after 26 generations, except when populations that evolved on cranberry medium developed on cherry medium. These results suggest that, in the theoretical framework of a fitness landscape, the fitness optima of cherry and cranberry media are the furthest apart. Our results show that studying how fitness changes across several environments and across multiple generations provides insights into the dynamics of local adaptation that would not be evident if fitness were analysed at a single point in time. By allowing a qualitative mapping of an experimental fitness landscape, our approach will improve our understanding of the ecological factors that drive the evolution of local adaptation in D. suzukii.


Assuntos
Adaptação Fisiológica , Drosophila , Aclimatação , Animais , Meios de Cultura , Drosophila/genética
7.
Am J Bot ; 107(2): 298-307, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31989586

RESUMO

PREMISE: Identifying the environmental factors responsible for natural selection across different habitats is crucial for understanding the process of local adaptation in plants. Despite its importance, few studies have successfully isolated the environmental factors driving local adaptation in nature. In this study, we evaluated the agents of selection responsible for local adaptation of the monkeyflower Mimulus guttatus to California's coastal and inland habitats. METHODS: We implemented a manipulative reciprocal transplant experiment at coastal and inland sites, where we excluded aboveground stressors in an effort to elucidate their role in the evolution of local adaptation. RESULTS: Excluding aboveground stressors, most likely a combination of salt spray and herbivory, completely rescued inland annual plant fitness when transplanted to coastal habitat. The exclosures in inland habitat provided a benefit to the performance of coastal perennial plants. However, the exclosures are unlikely to provide much fitness benefit to the coastal plants at the inland site because of their general inability to flower in time to escape from the summer drought. CONCLUSIONS: Our study demonstrates that a distinct set of selective agents (aboveground vs. belowground) are responsible for local adaptation at opposite ends of an environmental gradient.


Assuntos
Mimulus , Adaptação Fisiológica , California , Ecossistema , Seleção Genética
8.
Am J Bot ; 107(3): 423-435, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067225

RESUMO

PREMISE: Different cytotypes of a species may differ in their morphology, phenology, physiology, and their tolerance of extreme environments. We studied the ecological niches of two subspecies of Saxifraga rosacea with different ploidy levels: the hexaploid Central European endemic subspecies sponhemica and the more widely distributed octoploid subspecies rosacea. METHODS: For both cytotypes, we recorded local environmental conditions and mean plant trait values in populations across their areas of distribution, analyzed their distributions by niche modeling, studied their performance at two transplant sites with contrasting conditions, and experimentally tested their cold resistance. RESULTS: Mean annual temperature was higher in hexaploid than in octoploid populations and experiments indicated that frost tolerance of the hexaploid is lower than that of the octoploid. Reproduction of octoploids from Central Europe was higher than that of hexaploids at a transplant site in subarctic Iceland, whereas the opposite was true in temperate Luxembourg, indicating adaptation of the octoploids to colder conditions. Temperature variables were also most important in niche models predicting the distribution of the two cytotypes. Genetic differences in survival among populations were larger for the octoploids than for the hexaploids in both field gardens, suggesting that greater genetic variability may contribute to the octoploid's larger distributional range. CONCLUSIONS: Our results support the hypotheses that different cytotypes may have different niches leading to spatial segregation, and that higher ploidy levels can result in a broader ecological niche and greater tolerance of more extreme conditions.


Assuntos
Rosácea , Saxifragaceae , Ecossistema , Europa (Continente) , Humanos , Poliploidia
9.
J Evol Biol ; 31(6): 784-800, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518274

RESUMO

Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta-analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.


Assuntos
Adaptação Fisiológica/genética , Fenômenos Fisiológicos Vegetais/genética , Plantas/classificação , Altitude , Evolução Biológica
10.
Ecology ; 98(10): 2708-2724, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28766693

RESUMO

Relatively common species within a clade are expected to perform well across a wider range of conditions than their rarer relatives, yet experimental tests of this "niche-breadth-range-size" hypothesis remain surprisingly scarce. Rarity may arise due to trade-offs between specialization and performance across a wide range of environments. Here we use common garden and reciprocal transplant experiments to test the niche-breadth-range-size hypothesis, focusing on four common and three rare endemic alpine daisies (Brachyscome spp.) from the Australian Alps. We used three experimental contexts: (1) alpine reciprocal seedling experiment, a test of seedling survival and growth in three alpine habitat types differing in environmental quality and species diversity; (2) warm environment common garden, a test of whether common daisy species have higher growth rates and phenotypic plasticity, assessed in a common garden in a warmer climate and run simultaneously with experiment 1; and (3) alpine reciprocal seed experiment, a test of seed germination capacity and viability in the same three alpine habitat types as in experiment 1. In the alpine reciprocal seedling experiment, survival of all species was highest in the open heathland habitat where overall plant diversity is high, suggesting a general, positive response to a relatively productive, low-stress environment. We found only partial support for higher survival of rare species in their habitats of origin. In the warm environment common garden, three common daisies exhibited greater growth and biomass than two rare species, but the other rare species performed as well as the common species. In the alpine reciprocal seed experiment, common daisies exhibited higher germination across most habitats, but rare species maintained a higher proportion of viable seed in all conditions, suggesting different life history strategies. These results indicate that some but not all rare, alpine endemics exhibit stress tolerance at the cost of reduced growth rates in low-stress environments compared to common species. Finally, these findings suggest the seed stage is important in the persistence of rare species, and they provide only weak support at the seedling stage for the niche-breadth-range-size hypothesis.


Assuntos
Asteraceae/fisiologia , Ecossistema , Austrália , Flores , Germinação , Plântula , Sementes
11.
New Phytol ; 206(1): 459-470, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25422098

RESUMO

Information about the incidence and magnitude of local adaptation can help to predict the response of natural populations to a changing environment, and should be of particular interest in arctic and alpine environments where the effects of climate change are expected to be severe. To quantify adaptive differentiation in the arctic-alpine perennial herb Arabis alpina, we conducted reciprocal transplant experiments for 3 yr between Spanish and Scandinavian populations. At the sites of one Spanish and one Scandinavian population, we planted seedlings representing two Spanish and four Scandinavian populations, and recorded survival, flowering propensity and fecundity. The experiment was replicated in two subsequent years. The results demonstrate strong adaptive differentiation between A. alpina populations from the two regions. At the field site in Spain, survival and fruit production of Spanish populations were higher than those of Scandinavian populations, while the opposite was true at the site in Scandinavia, and these differences were consistent across years. By comparison, fitness varied little among populations from the same region. The results suggest that the magnitude and geographical scale of local adaptation need to be considered in predictions of the effects of global change on the dynamics of arctic and alpine plant populations.


Assuntos
Adaptação Fisiológica , Arabis/fisiologia , Regiões Árticas , Mudança Climática , Meio Ambiente , Geografia , Reprodução , Países Escandinavos e Nórdicos , Espanha
12.
J Evol Biol ; 28(10): 1849-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201435

RESUMO

Local adaptation at range edges influences species' distributions and how they respond to environmental change. However, the factors that affect adaptation, including gene flow and local selection pressures, are likely to vary across different types of range edge. We performed a reciprocal transplant experiment to investigate local adaptation in populations of Plantago lanceolata and P. major from central locations in their European range and from their latitudinal and elevation range edges (in northern Scandinavia and Swiss Alps, respectively). We also characterized patterns of genetic diversity and differentiation in populations using molecular markers. Range-centre plants of P. major were adapted to conditions at the range centre, but performed similarly to range-edge plants when grown at the range edges. There was no evidence for local adaptation when comparing central and edge populations of P. lanceolata. However, plants of both species from high elevation were locally adapted when compared with plants from high latitude, although the reverse was not true. This asymmetry was associated with greater genetic diversity and less genetic differentiation over the elevation gradient than over the latitudinal gradient. Our results suggest that adaptation in some range-edge populations could increase their performance following climate change. However, responses are likely to differ along elevation and latitudinal gradients, with adaptation more likely at high-elevation. Furthermore, based upon these results, we suggest that gene flow is unlikely to constrain adaptation in range-edge populations of these species.


Assuntos
Adaptação Fisiológica , Altitude , Plantago/fisiologia , Plantago/classificação , Especificidade da Espécie
13.
R Soc Open Sci ; 11(4): 231304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577214

RESUMO

The larvae of the European fire salamander (Salamandra salamandra) can inhabit two different habitats: streams and ponds. Streams are characterized by lower predation risks and higher food availability. Thus, ponds are considered a less suitable habitat. To investigate the differential impacts of these two habitats on larval physiology, we measured the stress response of larvae. After successfully validating the measure of water-borne corticosterone release rates in fire salamander larvae, we measured the baseline and stress-induced corticosterone of 64 larvae from ponds and streams in the field. We found that larvae in ponds have a higher baseline and stress-induced corticosterone levels. Additionally, we performed a reciprocal transplant experiment (RTE) and tested whether larvae can adapt their stress responses to changing habitats. After two weeks, we did not find an increase in corticosterone levels when comparing stress-induced corticosterone values with baseline corticosterone values in larvae transferred into ponds, irrespective of their habitat of origin. However, larvae transferred into streams still exhibited an increase in the stress-induced corticosterone response in comparison with the baseline values. These results show that non-invasive hormone measurements can provide information on the habitat quality and potential adaptation and thus emphasize the potential for its use in conservation efforts.

14.
Ecology ; 105(4): e4260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353290

RESUMO

There is strong trait dependence in species-level responses to environmental change and their cascading effects on ecosystem functioning. However, there is little understanding of whether intraspecific trait variation (ITV) can also be an important mechanism mediating environmental effects on ecosystem functioning. This is surprising, given that global change processes such as habitat fragmentation and the creation of forest edges drive strong trait shifts within species. On 20 islands in the Thousand Island Lake, China, we quantified intraspecific leaf trait shifts of a widely distributed shrub species, Vaccinium carlesii, in response to habitat fragmentation. Using a reciprocal transplant decomposition experiment between forest edge and interior on 11 islands with varying areas, we disentangled the relative effects of intraspecific leaf trait variation versus altered environmental conditions on leaf decomposition rates in forest fragments. We found strong intraspecific variation in leaf traits in response to edge effects, with a shift toward recalcitrant leaves with low specific leaf area and high leaf dry matter content from forest interior to the edge. Using structural equation modeling, we showed that such intraspecific leaf trait response to habitat fragmentation had translated into significant plant afterlife effects on leaf decomposition, leading to decreased leaf decomposition rates from the forest interior to the edge. Importantly, the effects of intraspecific leaf trait variation were additive to and stronger than the effects from local environmental changes due to edge effects and habitat loss. Our experiment provides the first quantitative study showing that intraspecific leaf trait response to edge effects is an important driver of the decrease in leaf decomposition rate in fragmented forests. By extending the trait-based response-effect framework toward the individual level, intraspecific variation in leaf economics traits can provide the missing functional link between environmental change and ecological processes. These findings suggest an important area for future research on incorporating ITV to understand and predict changes in ecosystem functioning in the context of global change.


Assuntos
Ecossistema , Florestas , Plantas , Clima , Folhas de Planta/fisiologia
15.
Ann Bot ; 112(9): 1921-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24214934

RESUMO

BACKGROUND AND AIMS: Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. METHODS: A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). KEY RESULTS: Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. CONCLUSIONS: Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a 'jack-and-master' strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation.


Assuntos
Adaptação Biológica , Impatiens/fisiologia , Espécies Introduzidas , Concentração de Íons de Hidrogênio , Luz , Solo
17.
Front Plant Sci ; 12: 659479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079569

RESUMO

Filing gaps in our understanding of species' abilities to adapt to novel climates is a key challenge for predicting future range shifts and biodiversity loss. Key knowledge gaps are related to the potential for evolutionary rescue in response to climate, especially in long-lived clonally reproducing species. We illustrate a novel approach to assess the potential for evolutionary rescue using a combination of reciprocal transplant experiment in the field to assess performance under a changing climate and independent growth chamber assays to assess growth- and physiology-related plant trait maxima and plasticities of the same clones. We use a clonal grass, Festuca rubra, as a model species. We propagated individual clones and used them in a transplant experiment across broad-scale temperature and precipitation gradients, simulating the projected direction of climate change in the region. Independent information on trait maxima and plasticities of the same clones was obtained by cultivating them in four growth chambers representing climate extremes. Plant survival was affected by interaction between plant traits and climate change, with both trait plasticities and maxima being important for adaptation to novel climates. Key traits include plasticity in extravaginal ramets, aboveground biomass, and osmotic potential. The direction of selection in response to a given climatic change detected in this study mostly contradicted the natural trait clines indicating that short-term selection pressure as identified here does not match long-term selection outcomes. Long-lived clonal species exposed to different climatic changes are subjected to consistent selection pressures on key traits, a necessary condition for adaptation to novel conditions. This points to evolutionary rescue as an important mechanism for dealing with climate change in these species. Our experimental approach may be applied also in other model systems broadening our understanding of evolutionary rescue. Such knowledge cannot be easily deduced from observing the existing field clines.

18.
New Phytol ; 208(4): 1277, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26536153
19.
Ecol Evol ; 10(17): 9410-9418, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953070

RESUMO

Food resource specialization within novel environments is considered a common axis of diversification in adaptive radiations. Feeding specializations are often coupled with striking morphological adaptations and exemplify the relation between morphology and diet (phenotype-environment correlations), as seen in, for example, Darwin finches, Hawaiian spiders, and the cichlid fish radiations in East African lakes. The cichlids' potential to rapidly exploit and occupy a variety of different habitats has previously been attributed to the variability and adaptability of their trophic structures including the pharyngeal jaw apparatus. Here we report a reciprocal transplant experiment designed to explore the adaptability of the trophic structures in highly specialized cichlid fish species. More specifically, we forced two common but ecologically distinct cichlid species from Lake Tanganyika, Tropheus moorii (rock-dweller), and Xenotilapia boulengeri (sand-dweller), to live on their preferred as well as on an unpreferred habitat (sand and rock, respectively). We measured their overall performance on the different habitat types and explored whether adaptive phenotypic plasticity is involved in adaptation. We found that, while habitat had no effect on the performance of X. boulengeri, T. moorii performed significantly better in its preferred habitat. Despite an experimental duration of several months, we did not find a shift in the morphology of the lower pharyngeal jaw bone that would be indicative of adaptive phenotypic plasticity in this trait.

20.
Ecol Evol ; 10(6): 3103-3111, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32211180

RESUMO

The variability in the genetic variance-covariance (G-matrix) in plant resistance and its role in the evolution of invasive plants have been long overlooked. We conducted an additional analysis of the data of a reciprocal transplant experiment with tall goldenrod, Solidago altissima, in multiple garden sites within its native range (USA) and introduced range (Japan). We explored the differences in G-matrix of resistance to two types of foliar herbivores: (a) a lace bug that is native to the USA and recently introduced to Japan, (b) and other herbivorous insects in response to plant origins and environments. A negative genetic covariance was found between plant resistances to lace bugs and other herbivorous insects, in all combinations of garden locations and plant origins except for US plants planted in US gardens. The G-matrix of the resistance indices did not differ between US and Japanese plants either in US or Japanese gardens, while it differed between US and Japanese gardens in both US and Japanese plants. Our results suggested that the G-matrix of the plant resistance may have changed in response to novel environmental differences including herbivore communities and/or other biotic and abiotic factors in the introduced range. This may have revealed a hidden trade-off between resistances, masked by the environmental factors in the origin range. These results suggest that the stability of the genetic covariance during invasion, and the environmentally triggered variability in the G-matrices of plant resistance may help to protect the plant against multiple herbivore species without changing its genetic architecture and that this may lead to a rapid adaptation of resistance in exotic plants. Local environments of the plant also have a critical effect on plant resistance and should be considered in order to understand trait evolution in exotic plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA