Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474976

RESUMO

In this article, the phenomena of beam deviation in reflectarray is discussed. The radiation pattern of the unit cell, which plays a vital role in shaping the beam of the reflectarray, is analyzed by considering undesired specular and scattered reflections. These unwanted reflections adversely affect the pattern of the single unit cell, thereby reducing the overall performance of the reflectarray. To conduct our investigations, three cases of reflectarray-i.e., (i) a center-fed with broadside beam (Case-I), (ii) a center-fed with the beam at 30° (Case-II), and (iii) off-center-fed with the beam at 30° reciprocal to feed position with reference to the broadside direction (Case-III)-are simulated. Different degrees of beam deviation are analyzed in each reflectarray by assessing the radiation pattern of a single element. The simulation results shows that maximum of 0°, 3.4°, and 0.54° beam squint across the bandwidth found in Case-I, Case-II, and Case-III, respectively; this leads to aperture efficiencies of 31.2%, 11.9%, and 31.2%, respectively. The significance of specular reflections is further confirmed by half (left half and right half) aperture analysis of Case-II. This involves simulating the half-plane aperture illuminated by horn antenna, resulting in a distinct beam angle at the same frequency. However, deviations of -4.71 to +4.1 for the left half aperture and -1.82 to +1.1 for the right half aperture are noticed. Although the analysis specifically focuses on the three cases of the reflectarray, the proposed methodology is applicable to any type of reflectarray. The study presented in this work provides an important insight into the practical aspects of reflectarray operation, particularly in terms of quantifying undesirable effects that are normally overlooked in the design of this class of arrays. To achieve a good performance, a new design of the dielectric loaded horn feed is proposed. This design approach is both simple and applicable to any reflectarray, with the added benefit of maintaining a low profile for the RA. Moreover, this work holds significant potential for remote sensing satellite systems as beam deviation can adversely impact data collection accuracy and compromise observation precision, resulting in distorted images, reduced data quality, and overall hindrance to the system's performance in capturing reliable information.

2.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447631

RESUMO

A high-gain low-profile reflector antenna with dual-band radiation ability is presented in this paper. The antenna achieves a relative 2 dB gain bandwidth of 10% around fl, and a relative 2 dB gain bandwidth of 20%, around fh, where fl and fh are the center operating frequencies of the frequency bands of 29.4~32.4 GHz and 142~174 GHz, respectively. To achieve the dual-band radiation ability, a composite dual-band feed with an fh/fl ratio of around 5 is proposed as the feed for the reflector antenna, which includes a higher-band circular waveguide and a lower-band coaxial horn. The metallic elliptical surface serves as the subreflector (SR) in the higher band, while the SR is the planar reflectarray in the lower band. Due to the design of the dual reflector, the dual-band reflector antenna features a low focal-to-diameter (F/D) ratio of approximately 0.2. According to the simulated results, the proposed reflector antenna achieves efficiencies of 59.0% and 42.9% at fl and fh, respectively. For verification purposes, a Ku/E-band scaled prototype is manufactured. The measured VSWRs, radiation patterns, and gains are in reasonable agreement with the simulated ones, proving the correctness of the proposed design method.

3.
Sensors (Basel) ; 22(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36433568

RESUMO

This paper presents an optimization of reflectarray-based RF sensors for detecting UAV and human presence. Our previous human detection radar system adapted a center-fed reflectarray antenna to a commercially available radar system, successfully increasing the gains of the transmit (TX) and receive (RX) antennas by 21.18 dB and the range for detecting human targets 3.4 times. However, because the TX and RX antennas were placed in the focal point of the reflectarray, the TX signal reflected by the reflectarray was directly propagated into the RX antenna, causing desensitization or damage to the receiving circuit if high powers were used. To reduce this direct reflection, we propose a novel radar antenna configuration in which the TX and RX antennas are placed back-to-back with each other. In this configuration, the RX antenna does not directly face the reflectarray, thus direct path between the TX to RX through the reflectarray is removed. The results demonstrate that this approach achieves the optimum isolation level of 51.3 dB. With the reflectarray, the TX antenna gain increases to 30.6 dBi, but the RX antenna gain remains at 16 dBi since the RX antenna does not utilize the reflectarray. The TX and RX gain difference (14.6 dB) is a trade-off for good isolation and may be reduced by utilizing a high-gain receiver amplifier.


Assuntos
Amplificadores Eletrônicos , Radar , Humanos , Desenho de Equipamento , Corpo Humano
4.
Sensors (Basel) ; 22(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161909

RESUMO

This paper presents the analysis and design of an X-band reflectarray. The proposed antenna can be used for a medium Earth orbit (MEO) remote sensing satellite system in the 8.5 GHz band. To obtain a nearly constant response along the coverage area of this satellite system, the proposed antenna was designed with a flat-top radiation pattern with a beam width of around 29° for the required MEO system. In addition, broadside pencil beam and tilted pencil beam reflectarrays were also investigated. The feeding element of the proposed reflectarray antennas is a Yagi-Uda array. The amplitude and phase distribution of the fields due to the feeding element on the aperture of the reflectarray antenna are obtained directly by numerical simulation without introducing any approximation. The required phase distribution along the aperture of the reflectarray to obtain the required flat-top radiation pattern is obtained using the genetic algorithm (GA) optimization method. The reflecting elements of the reflectarray are composed of stacked circular patches. This stacked configuration was found to be appropriate for obtaining a wide range of reflection phase shift, which is required to implement the required phase distribution on the reflectarray aperture. The antenna was fabricated and measured for verification.

5.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433522

RESUMO

Two near field models for the analysis of spatially fed planar array antennas are presented, compared and applied to a multi-frequency wideband direct layout optimization for mm-Wave 5G new radio (NR) indoor network coverage. One model is based on the direct application of the radiation equations directly derived from the A and F vector potentials. The second model is based on the superposition of far field contributions of all array elements, which are modelled as rectangular apertures with constant field. Despite the different assumptions made to develop both models, the degree of agreement between them in the computation of the radiated near field is very high. The relative error between the models is equal or lower than 3.2% at a plane 13λ from the array, and it decreases as the near field is computed further away from the array. Then, the faster model is employed in a general direct layout optimization procedure to shape the electromagnetic near field for application in an indoor femtocell to provide coverage with constant power in a private office. Results show that a magnitude ripple better than 1.5 dB can be achieved in an enlarged coverage area covering the whole n257 band of the 5G NR, corresponding to a 10.7% relative bandwidth.

6.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450720

RESUMO

A reflectarray antenna with an optimized sectorial beam is designed for the surveillance channel of a DVB-S-based passive radar (PR). The employment of satellite illuminators requires a high gain antenna to counteract the losses due to the great distance from the transmitter, but without forgetting a beamwidth wide enough to provide angular coverage. A method based on optimizing the position of several contiguous beams is proposed to achieve the required sectorial pattern. Different reflectarray elements are designed to achieve S-curves with smooth slopes and covering all the required phases (the S-curve represents the reflection phase of a single element, as a function of size, rotation and incidence angle). The real phase and modulus of the reflection coefficient of each element are considered in the optimization process to achieve the best real prototype. Geometry has been studied and adapted to employ commercial elements for the feed, feed-arm and the structure that holds the aperture. The designed prototype has been characterized in an anechoic chamber achieving a stable gain greater than 19 dBi in almost the complete DVB-S band, from 10.5 GHz to 12 GHz with a sectorial beam of 8.7∘×5.2∘. The prototype has also been validated in PR trials in terrestrial scenarios allowing the detection of cars at distances up to 600 m away from the PR, improving the performance achieved with commercial parabolic dish antennas.

7.
Sensors (Basel) ; 21(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396207

RESUMO

Broadband communication satellites in Ka-band commonly use four reflector antennas to generate a multispot coverage. In this paper, four different multibeam antenna farms are proposed to generate the complete multispot coverage using only two multibeam reflectarrays, making it possible to halve the number of required antennas onboard the satellite. The proposed solutions include flat and curved reflectarrays with single or dual band operation, the operating principles of which have been experimentally validated. The designed multibeam reflectarrays for each antenna farm have been analyzed to evaluate their agreement with the antenna requirements for real satellite scenarios in Ka-band. The results show that the proposed configurations have the potential to reduce the number of antennas and feed-chains onboard the satellite, from four reflectors to two reflectarrays, enabling a significant reduction in cost, mass, and volume of the payload, which provides a considerable benefit for satellite operators.

8.
Nano Lett ; 19(6): 3961-3968, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31136191

RESUMO

We report a dynamically tunable reflectarray metasurface that continuously modulates the phase of reflected light in the near-infrared wavelength range under active electrical control of the phase transition from semiconducting to semimetallic states. We integrate a vanadium dioxide (VO2) active layer into the dielectric gap of antenna elements in a reflectarray metasurface, which undergoes an insulator-to-metal transition upon resistive heating of the metallic patch antenna. The induced phase transition in the VO2 film strongly perturbs the magnetic dipole resonance supported by the metasurface. By carefully controlling the volume fractions of coexisting metallic and dielectric regions of the VO2 film, we observe a continuous shift of the phase of the reflected light, with a maximal achievable phase shift as high as 250°. We also observe a reflectance modulation of 23.5% as well as a spectral shift of the resonance position by 175 nm. The metasurface phase modulation is fairly broadband, yielding large phase shifts at multiple operation wavelengths.

9.
Sensors (Basel) ; 18(4)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621155

RESUMO

This article demonstrated an accurate analysis technique for dual-reflectarray antennas that take into account the angle of incidence of the impinging electric field on the main reflectarray cells. The reflected field on the sub and the main reflectarray surfaces is computed using Method of Moments in the spectral domain and assuming local periodicity. The sub-reflectarray is divided into groups of elements and the field radiated by each group is used to compute the incident and reflected field on the main reflectarray cells. A 50-cm demonstrator in Ku-band that provides European coverage has been designed, manufactured and tested to validate the analysis technique. The measured radiation patterns match the simulations and they fulfill the coverage requirements, achieving a cross-polar discrimination better than 25 dB in the frequency range: 12.975-14.25 GHz.

10.
Philos Trans A Math Phys Eng Sci ; 373(2049)2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26217060

RESUMO

In this paper, we present an alternative approach to addressing the problem of designing a number of practical 'microwave' devices such as blankets serving as absorbers for radar targets, flat lenses and reflectarrays.

11.
Micromachines (Basel) ; 15(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542646

RESUMO

The power capacity of reflectarray antennas (RAs) is investigated through full-wave simulations and high-power microwave (HPM) experiments in this paper. In order to illustrate the results in detail, two RA elements are designed. The simulated power handling capacity of two RA elements are 7.17 MW/m2 and 2.3 GW/m2, respectively. To further study the HPM RA, two RA prototypes operating at 2.8 GHz are constructed with the aperture size of 1 m × 1 m. Simulations and experimental measurements are conducted for the two prototypes. The experimental results demonstrate that, even when subjected to 1 GW of power, the radiation beam of the RA with the second elements can still propagate in the intended direction. This research will establish a basis for advancing the practicality of RAs in HPM applications.

12.
Nanomaterials (Basel) ; 14(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39330652

RESUMO

In this study, a metasurface-based reflectarray is designed for X-band applications. The unit cells are equipped with an H-shaped slotted patch for additional resonance and phase range. Linear phase variation by altering the length of the patch is realized with a range exceeding 480∘. The reflectarray is designed and fabricated on a thin and high-quality Rogers 5880 substrate. The Finite Element Boundary Integral (FEBI) method is used to simulate a 23×23 element reflectarray and then fabricated to achieve the measured results using an anechoic chamber. The peak gain of the proposed reflectarray is 25.5 dBi recorded with an aperture efficiency of 63.7% at a center frequency of 10 GHz. The cross-polarization and side-lobe levels in the entire band are less than -33 dB and -21 dB, respectively. Moreover, the proposed reflectarray antenna achieves a 20% 1-dB gain bandwidth.

13.
Sci Rep ; 14(1): 15286, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961184

RESUMO

A compact low-profile multi-band millimeter-wave (mm-wave) reflectarray metasurface design is presented for coverage enhancement in 5G and beyond cellular communication. The proposed single-layer metasurface exhibits a stable reflection response under oblique incidence angles of up to 60 ∘ at 24 and 38 GHz, and transmission response at 30 GHz, effectively covering the desired 5G mm-wave frequency bands. The proposed reflectarray metasurface is polarization insensitive and performs equally well under TE and TM polarized incident waves due to the symmetric pattern. In addition, the low profile of the proposed metasurface makes it appropriate for conformal applications. In comparison to the state-of-the-art, the proposed reflectarray metasurface unit cell design is not only compact (3.3  ×  3.3 mm 2 ) but also offers two reflections and one transmission band based on a single-layer structure. It is easy to reconfigure the proposed metasurface unit cell for any other frequency band by adjusting a few design parameters. To validate the concept of coverage enhancement, a 32  ×  x32 unit-cell prototype of the proposed reflectarray metasurface is fabricated and measured under different scenarios. The experimental results demonstrate that a promising signal enhancement of 20-25 dB is obtained over the entire 5G mm-wave n258, n259, and n260 frequency bands. The proposed reflectarray metasurface has a high potential for application in mm-wave 5G networks to improve coverage in dead zones or to overcome obstacles that prevent direct communication linkages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA