RESUMO
BACKGROUND: Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS: Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION: In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.
Assuntos
Streptomyces , Streptomyces/metabolismo , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regiões Promotoras Genéticas , Família MultigênicaRESUMO
Rice (Oryza sativa) is sensitive to low temperatures, which affects the yield and quality of rice. Therefore, uncovering the molecular mechanisms behind chilling tolerance is a critical task for improving cold tolerance in rice cultivars. Here, we report that OsWRKY63, a WRKY transcription factor with an unknown function, negatively regulates chilling tolerance in rice. OsWRKY63-overexpressing rice lines are more sensitive to cold stress. Conversely, OsWRKY63-knockout mutants generated using a CRISPR/Cas9 genome editing approach exhibited increased chilling tolerance. OsWRKY63 was expressed in all rice tissues, and OsWRKY63 expression was induced under cold stress, dehydration stress, high salinity stress, and ABA treatment. OsWRKY63 localized in the nucleus plays a role as a transcription repressor and downregulates many cold stress-related genes and reactive oxygen species scavenging-related genes. Molecular, biochemical, and genetic assays showed that OsWRKY76 is a direct target gene of OsWRKY63 and that its expression is suppressed by OsWRKY63. OsWRKY76-knockout lines had dramatically decreased cold tolerance, and the cold-induced expression of five OsDREB1 genes was repressed. OsWRKY76 interacted with OsbHLH148, transactivating the expression of OsDREB1B to enhance chilling tolerance in rice. Thus, our study suggests that OsWRKY63 negatively regulates chilling tolerance through the OsWRKY63-OsWRKY76-OsDREB1B transcriptional regulatory cascade in rice.
Assuntos
Oryza , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Tapetal programmed cell death (PCD) is a complex biological process that plays an important role in pollen formation and reproduction. Here, we identified the MYB2 transcription factor expressed in the tapetum from stage 5 to stage 11 that was essential for tapetal PCD and pollen development in Arabidopsis thaliana. Downregulation of MYB2 retarded tapetal degeneration, produced defective pollen, and decreased pollen vitality. EMSA and transcriptional activation analysis revealed that MYB2 acted as an upstream activator and directly regulated expression of the proteases CEP1 and ßVPE. The expression of these proteases was lower in the buds of the myb2 mutant. Overexpression of either/both CEP1 or/and ßVPE proteases partially recover pollen vitality in the myb2 background. Taken together, our results revealed that MYB2 regulates tapetal PCD and pollen development by directly activating expression of the proteases CEP1 and ßVPE. Thus, a transcription factor/proteases regulatory and activated cascade was established for tapetal PCD during another development in Arabidopsis thaliana. Highlight: MYB2 is involved in tapetal PCD and pollen development by directly regulating expression of the protease CEP1 and ßVPE and establishes a transcription factor/proteases regulatory and activated cascade.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fenômenos Biológicos , Apoptose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Pólen , Transativadores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Males and females have different reproductive roles and are often subject to contrasting selection pressures. This sexual antagonism can lead, at a given locus, to different alleles being favoured in each sex and, consequently, to genetic variation being maintained in a population. Although the presence of sexually antagonistic (SA) polymorphisms has been documented across a range of species, their evolutionary dynamics remain poorly understood. Here, we study SA selection on gene expression, which is fundamental to sexual dimorphism, via the evolution of regulatory binding sites. We show that for sites longer than 1 nucleotide, expression polymorphism is maintained only when intermediate expression levels are deleterious to both sexes. We then show that, in a regulatory cascade, expression polymorphism tends to become displaced over evolutionary time from the target of SA selection to upstream regulators. Our results have consequences for understanding the evolution of sexual dimorphism, and provide specific empirical predictions for the regulatory architecture of genes under SA selection.
Assuntos
Redes Reguladoras de Genes/genética , Preferência de Acasalamento Animal , Polimorfismo Genético , Caracteres Sexuais , Adaptação Fisiológica , Animais , Sítios de Ligação/genética , Feminino , Masculino , ReproduçãoRESUMO
Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, whose expression is strictly controlled by small diffusible signaling molecules at nano-molar concentrations. The signaling molecules identified to date are classified into three skeletons; γ-butyrolactones, furans, and γ-butenolides. Accumulated data suggest the structural diversity of the signaling molecules in Streptomyces species and their potential in activating cryptic secondary metabolite biosynthetic pathways. Several genome mining approaches to activate silent biosynthetic gene clusters have been reported for natural product discovery. This review updates recent examples on genetic manipulation including blockage of metabolic pathways together with inactivation of transcriptional repressor genes.
Assuntos
Antibacterianos/biossíntese , Genoma Bacteriano , Genômica/métodos , Redes e Vias Metabólicas/genética , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica/genética , Proteínas Repressoras/genética , Metabolismo Secundário/genética , Transdução de Sinais , Streptomyces/químicaRESUMO
Identification of the upstream regulators of a gene is important to characterize the transcriptional pathway and the function of the gene. Previously, we found that a zinc finger protein (ThZFP1) is involved in abiotic stress tolerance of Tamarix hispida. In the present study, we further investigated the transcriptional pathway of ThZFP1. Dof motifs are abundant in the ThZFP1 promoter; therefore, we used them to screen for transcriptional regulators of ThZFP1. A Dof protein, ThDof1.4, binds to the Dof motif specifically, and was hypothesized as the upstream regulator of ThZFP1. Further study showed that overexpression of ThDof1.4 in T. hispida activated the expression of GUS controlled by the ThZFP1 promoter. In T. hispida, transient overexpression of ThDof1.4 increased the transcripts of ThZFP1; conversely, transient RNAi-silencing of ThDof1.4 reduced the expression of ThZFP1. Chromatin immunoprecipitation indicated that ThDof1.4 binds to the ThZFP1 promoter. Additionally, ThDof1.4 and ThZFP1 share similar expression patterns in response to salt or drought stress. Furthermore, like ThZFP1, ThDof1.4 could increase the proline level and enhance ROS scavenging capability to improve salt and osmotic stress tolerance. Together, these results suggested that ThDof1.4 and ThZFP1 form a transcriptional regulatory cascade involved in abiotic stress resistance in T. hispida.
Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Pressão Osmótica/fisiologia , Proteínas de Plantas/metabolismo , Cloreto de Sódio/toxicidade , Tamaricaceae/metabolismo , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Transcrição GênicaRESUMO
Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over-expression of the BR-synthesis gene D11 or a BR-signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non-transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop.
Assuntos
Brassinosteroides/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Sementes/genéticaRESUMO
We extensively analyzed the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two structurally unrelated polyketide antibiotics, lankacidin and lankamycin. It was found that amine oxidase LkcE oxidizes an acyclic amine to an imine, which is in turn converted to the 17-membered carbocyclic lankacidin. Heterologous expression and translational fusion experiments indicated the modular-iterative mixed polyketide biosynthesis of lankacidin. Concerning to lankamycin biosynthesis, starter unit biosynthesis and the post-PKS modification pathway were elucidated by feeding and gene inactivation experiments. It was shown that pSLA2-L contains many regulatory genes, which constitute the signaling molecule/receptor system for antibiotic production and morphological differentiation in this strain. Two signaling molecules, SRB1 and SRB2, that induce production of lankacidin and lankamycin were further isolated and their structures were elucidated. Each contains a 2,3-disubstituted butenolide skeleton, and the stereochemistry at C-1' position is crucial for inducing activity.
Assuntos
Antibacterianos/biossíntese , Família Multigênica/genética , Plasmídeos/genética , Streptomyces/genética , Streptomyces/metabolismo , Eritromicina/análogos & derivados , Eritromicina/biossíntese , Macrolídeos/metabolismoRESUMO
Microbe-mediated DBP (dibutyl phthalate) mineralization is acknowledged to be affected by diverse extracellular factors. However, little is known about the regulatory effects from quorum sensing (QS) signals. In this study, extracellularly applied QS signals A-like (hydroxymethyl dihydrofuran) was discovered to significantly enhance DBP degradation efficiency in Streptomyces sp. SH5. Monobutyl phthalate, protocatechuic acid and beta-ketoadipate were discovered as degradation intermediates by HPLC-TOF-MS/MS. Multi-omics analysis revealed the up-regulation of multiple hydrolases, transferases and decarboxylases that potentially contributed to A-like accelerated DBP degradation. Transcription of Orf2708, an orthologue of global transcriptional activator, was significantly induced by A-like. Orf2708 was demonstrated to interact specifically with the promoter of hydrolase orf2879 gene by EMSA, and the overexpression of orf2879 led to an enhanced DBP degradation in SH5. Taken together with the molecular docking studies showing the stability of ligand-receptor complex of A-like and its potential receptor Orf3712, a hierarchical regulatory cascade underlying the QS signal mediated DBP degradation was proposed as A-like/Orf3712 duplex formation, enhanced orf2708 expression and the downstream specific activation of hydrolase Orf2879. Our study presents the first evidence of GBLs-type promoted DBP degradation among bacteria, and the elucidated signal transduction path indicates a universal application potential of this activation strategy.
Assuntos
Percepção de Quorum , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Dibutilftalato/metabolismo , Hidrolases/metabolismo , Transdução de SinaisRESUMO
The lignin biosynthesis pathway plays a crucial role in the defense response against V. dahliae in cotton, and it is essential to identify the key regulators in this pathway for disease-resistant breeding. In a previous study, the cotton laccase gene GhLac1 was identified as mediating plant broad-spectrum biotic stress tolerance by manipulating phenylpropanoid metabolism. However, the upstream master regulators and regulatory mechanism of lignin are still largely unknown. This study aims to identify the upstream regulators of GhLac1 and explore the molecular mechanism underlying cotton's disease resistance response to V. dahliae. Through the study, three WRKY, three MYB, and one APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) TFs were identified as differentially responding to V. dahliae infection in cotton. Among these TFs, GhWRKY30, GhWRKY41, GhMYB42, and GhTINY2 were found to directly bind to the GhLac1 promoter and activate its expression. Transient overexpression of these four TFs in cotton led to increased expression of GhLac1 and other the laccase family members, while knockdown of these TFs resulted in reduced lignin accumulation and increased susceptibility to V. dahliae. Additionally, GhWRKY30 and GhWRKY41 were observed to interact with themselves and with each other, synergistically transactivating the GhLac1 promoter. This study reveals a GhLac1-centered transcriptional regulatory cascade of lignin synthesis that contributes to cotton's defense response by modulating lignin metabolism.
Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Gossypium , Lignina , Doenças das Plantas , Proteínas de Plantas , Fatores de Transcrição , Lignina/biossíntese , Lignina/metabolismo , Gossypium/genética , Gossypium/microbiologia , Gossypium/metabolismo , Gossypium/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lacase/genética , Lacase/metabolismo , Ascomicetos , Regiões Promotoras Genéticas , VerticilliumRESUMO
The development of stress tolerance is regulated via the transcriptional regulatory networks involving regulatory homeostasis mediated by protein-DNA interactions. LcNAC73 from Lonicera caerulea was characterized to understand the underlying mechanism of low-temperature and drought stress response in L. caerulea. To better understand the transcription pathway of LcNAC73, we cloned the promoter and screened proteins that could interact with the promoter. Using Yeast one-hybrid, electrophoretic mobility shift, and chromatin immunoprecipitation assays, we found that the LcMYB71 protein specifically bound to the promoter of LcNAC73. The transient transformation and stable transgenic system were used to produce transgenic L. caerulea plants with overexpressed and silenced LcNAC73, elucidating the effect of LcNAC73 on low-temperature and drought stress tolerance. LcNAC73 positively regulated the proline content and enhanced the scavenging of reactive oxygen species, thus improving tolerance to low-temperature and drought stress. Further studies revealed that LcMYB71 and LcNAC73 had similar functions and could improve plant low-temperature and drought tolerance. It is necessary to identify the upstream regulators of a specific gene to characterize gene functions and the associated transcriptional pathways.
RESUMO
Streptomyces rochei 7434AN4, a producer of lankacidin (LC) and lankamycin (LM), carries many regulatory genes including a biosynthesis gene for signaling molecules SRBs (srrX), an SRB receptor gene (srrA), and a SARP (Streptomyces antibiotic regulatory protein) family activator gene (srrY). Our previous study revealed that the main regulatory cascade goes from srrX through srrA to srrY, leading to LC production, whereas srrY further regulates a second SARP gene srrZ to synthesize LM. In this study we extensively investigated the function of srrB, a pseudo-receptor gene, by analyzing antibiotic production and transcription. Metabolite analysis showed that the srrB mutation increased both LC and LM production over four-folds. Transcription, gel shift, and DNase I footprinting experiments revealed that srrB and srrY are expressed under the SRB/SrrA regulatory system, and at the later stage, SrrB represses srrY expression by binding to the promoter region of srrY. These findings confirmed that SrrB acts as a negative regulator of the activator gene srrY to control LC and LM production at the later stage of fermentation in S. rochei.
RESUMO
Long noncoding (lnc)RNAs are a group of RNAs with a length greater than 200 nt that do not encode a protein but play an essential role in regulating the expression of target genes in normal biological contexts as well as pathologic processes including tumorigenesis. The lncRNA metastasis-associated lung adenocarcinoma transcript (MALAT)-1 has been widely studied in cancer. In this review, we describe the known functions of MALAT-1; its mechanisms of action; and associated signaling pathways and their clinical significance in different cancers. In most malignancies, including lung, colorectal, thyroid, and other cancers, MALAT-1 functions as an oncogene and is upregulated in tumors and tumor cell lines. MALAT-1 has a distinct mechanism of action in each cancer type and is thus at the center of large gene regulatory networks. Dysregulation of MALAT-1 affects cellular processes such as alternative splicing, epithelial-mesenchymal transition, apoptosis, and autophagy, which ultimately results in the abnormal cell proliferation, invasion, and migration that characterize cancers. In other malignancies, such as glioma and endometrial carcinoma, MALAT-1 functions as a tumor suppressor and thus forms additional regulatory networks. The current evidence indicates that MALAT-1 and its associated signaling pathways can serve as diagnostic or prognostic biomarker or therapeutic target in the treatment of many cancers.
RESUMO
Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Proteínas Nucleares/metabolismo , Animais , Diferenciação Celular/fisiologia , Cromatina/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Metiltransferases , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismoRESUMO
Vibrio cholerae is a Gram-negative motile bacterium capable of causing fatal pandemic disease in humans via oral ingestion of contaminated water or food. Within the human intestine, the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the small intestine, adhere to and multiply on the surface of the microvilli and cause disease via the action of cholera toxin. The explosive diarrhea associated with V. cholerae intestinal colonization leads to dissemination of the vibrios back into the environment to complete this phase of the life cycle. The host phase of the vibrio life cycle is made possible via the concerted action of a signaling cascade that controls the synthesis of V. cholerae colonization determinants. These virulence proteins are coordinately synthesized in response to specific host signals that are still largely undefined. A more complete understanding of the molecular events involved in the V. cholerae recognition of intraintestinal signals and the subsequent transcriptional response will provide important information regarding how pathogenic bacteria establish infection and provide novel methods for treating and/or preventing bacterial infections such as Asiatic cholera. This review will summarize what is currently known in regard to host intraintestinal signals that inform the complex ToxR regulatory cascade in order to coordinate in a spatial and temporal fashion virulence protein synthesis within the human small intestine.
Assuntos
Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Transdução de Sinais , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Fatores de Virulência/biossíntese , Animais , Humanos , VirulênciaRESUMO
Polycomb group (PcG) proteins are major chromatin-bound factors that can read and modify chromatin states to maintain gene silencing throughout development. Here we focus on a close homolog of the PcG protein Posterior sex combs to better understand how these proteins affect regulation. This homolog, called Suppressor 2 of zeste [Su(z)2] is composed of two regions: the N-terminal homology region (HR), which serves as a hub for protein interactions, and the C-terminal region (CTR), which is believed to harbor the core activity of compacting chromatin. Here, we describe our classical genetic studies to dissect the structure of Su(z)2 Surprisingly, we found that the CTR is dispensable for viability. Furthermore, the core activity of Su(z)2 seems to reside in the HR instead of the CTR. Remarkably, our data also suggest a regulatory cascade between CTR and HR of Su(z)2, which, in turn, may help prioritize the myriad of PcG interactions that occur with the HR.