Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Exp Eye Res ; 243: 109899, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636802

RESUMO

Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.


Assuntos
Técnicas de Transferência de Genes , RNA Mensageiro , Epitélio Pigmentado da Retina , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , RNA Mensageiro/genética , Terapia Genética/métodos , Vetores Genéticos , Camundongos Endogâmicos C57BL , Humanos , Proteínas de Fluorescência Verde/genética , Transição Epitelial-Mesenquimal , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
2.
Mol Biol Rep ; 51(1): 477, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573426

RESUMO

BACKGROUND: The retinal pigment epithelium (RPE) is essential for retinal homeostasis. Comprehensively exploring the transcriptional patterns of diabetic human RPE promotes the understanding of diabetic retinopathy (DR). METHODS AND RESULTS: A total of 4125 differentially expressed genes (DEGs) were screened out from the human primary RPE cells subjected to prolonged high glucose (HG). The subsequent bioinformatics analysis is divided into 3 steps. In Step 1, 21 genes were revealed by intersecting the enriched genes from the KEGG, WIKI, and Reactome databases. In Step 2, WGCNA was applied and intersected with the DEGs. Further intersection based on the enrichments with the GO biological processes, GO cellular components, and GO molecular functions databases screened out 12 candidate genes. In Step 3, 13 genes were found to be simultaneously up-regulated in the DEGs and a GEO dataset involving human diabetic retinal tissues. VEGFA and ERN1 were the 2 starred genes finally screened out by overlapping the 3 Steps. CONCLUSION: In this study, multiple genes were identified as crucial in the pathological process of RPE under protracted HG, providing potential candidates for future researches on DR. The current study highlights the importance of RPE in DR pathogenesis.


Assuntos
Retinopatia Diabética , Retina , Humanos , Retinopatia Diabética/genética , Células Epiteliais , Pigmentos da Retina , Glucose
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474284

RESUMO

N-retinylidene-N-retinylethanolamine (A2E) has been associated with age-related macular degeneration (AMD) physiopathology by inducing cell death, angiogenesis and inflammation in retinal pigmented epithelial (RPE) cells. It was previously thought that the A2E effects were solely mediated via the retinoic acid receptor (RAR)-α activation. However, this conclusion was based on experiments using the RAR "specific" antagonist RO-41-5253, which was found to also be a ligand and partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. Moreover, we previously reported that inhibiting PPAR and retinoid X receptor (RXR) transactivation with norbixin also modulated inflammation and angiogenesis in RPE cells challenged in the presence of A2E. Here, using several RAR inhibitors, we deciphered the respective roles of RAR, PPAR and RXR transactivations in an in vitro model of AMD. We showed that BMS 195614 (a selective RAR-α antagonist) displayed photoprotective properties against toxic blue light exposure in the presence of A2E. BMS 195614 also significantly reduced the AP-1 transactivation and mRNA expression of the inflammatory interleukin (IL)-6 and vascular endothelial growth factor (VEGF) induced by A2E in RPE cells in vitro, suggesting a major role of RAR in these processes. Surprisingly, however, we showed that (1) Norbixin increased the RAR transactivation and (2) AGN 193109 (a high affinity pan-RAR antagonist) and BMS 493 (a pan-RAR inverse agonist), which are photoprotective against toxic blue light exposure in the presence of A2E, also inhibited PPARs transactivation and RXR transactivation, respectively. Therefore, in our in vitro model of AMD, several commercialized RAR inhibitors appear to be non-specific, and we propose that the phototoxicity and expression of IL-6 and VEGF induced by A2E in RPE cells operates through the activation of PPAR or RXR rather than by RAR transactivation.


Assuntos
Carotenoides , Degeneração Macular , Receptores Ativados por Proliferador de Peroxissomo , Quinolinas , para-Aminobenzoatos , Anti-Inflamatórios , Agonismo Inverso de Drogas , Inflamação , Degeneração Macular/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Retinoides/metabolismo , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Front Neurosci ; 18: 1401571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114482

RESUMO

Introduction: One of the most common causes of vision loss in the elderly population worldwide is age-related macular degeneration (AMD). Subsequently, the number of people affected by AMD is estimated to reach approximately 288 million by the year 2040. The aim of this study was to develop an ex vivo model that simulates various aspects of the complex AMD pathogenesis. Methods: For this purpose, primary porcine retinal pigment epithelial cells (ppRPE) were isolated and cultured. One group was exposed to medium containing sodium iodate (NaIO3) to induce degeneration. The others were exposed to different supplemented media, such as bovine serum albumin (BSA), homogenized porcine retinas (HPR), or rod outer segments (ROOS) for eight days to promote retinal deposits. Then, these ppRPE cells were cocultured with porcine neuroretina explants for another eight days. To assess the viability of ppRPE cells, live/dead assay was performed at the end of the study. The positive RPE65 and ZO1 area was evaluated by immunocytochemistry and the expression of RLBP1, RPE65, and TJP1 was analyzed by RT-qPCR. Additionally, drusen (APOE), inflammation (ITGAM, IL6, IL8, NLRP3, TNF), oxidative stress (NFE2L2, SOD1, SOD2), and hypoxia (HIF1A) markers were investigated. The concentration of the inflammatory cytokines IL-6 and IL-8 was determined in medium supernatants from day 16 and 24 via ELISA. Results: Live/dead assay suggests that especially exposure to NaIO3 and HPR induced damage to ppRPE cells, leading in a significant ppRPE cell loss. All supplemented media resulted in decreased RPE-characteristic markers (RPE65; ZO-1) and gene expression like RLBP1 and RPE65 in the cultured ppRPE cells. Besides, some inflammatory, oxidative as well as hypoxic stress markers were altered in ppRPE cells cultivated with NaIO3. The application of HPR induced an enhanced APOE expression. Pre-exposure of the ppRPE cells led to a diminished number of cones in all supplemented media groups compared to controls. Discussion: Overall, this novel coculture model represents an interesting initial approach to incorporating deposits into coculture to mimic AMD pathogenesis. Nevertheless, the effects of the media used need to be investigated in further studies.

5.
Cells ; 13(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786083

RESUMO

As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.


Assuntos
Células Epiteliais , Vesículas Extracelulares , Células-Tronco Mesenquimais , Epitélio Pigmentado da Retina , Telomerase , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Vesículas Extracelulares/metabolismo , Telomerase/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia
6.
Cureus ; 16(1): e52980, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406066

RESUMO

Retinal pigment epithelium (RPE) tears occur when the RPE acutely breaks and retracts, leaving the underlying Bruch's membrane and choroid exposed. They usually happen in areas of previous pigment epithelial detachments and are generally associated with age-related macular degeneration (AMD). The purpose of this report is to describe a case of a spontaneous massive central RPE tear in a patient with untreated AMD. A 67-year-old female patient presented with complaints of sudden decreased vision in her right eye. Her best-corrected visual acuity was 2/20, and fundoscopy revealed a massive central retinal hemorrhage with intraretinal, subretinal, and sub-RPE blood. The patient started anti-vascular endothelial growth factor (VEGF) treatment, and after the blood was reabsorbed, a very large central tear of the RPE involving the central macula was evident, with a layer of detached retina folded on itself. She received continuous anti-VEGF therapy, and the final measurement of her visual acuity was 2/200, despite the complete reabsorption of the hemorrhage. RPE tears may occur spontaneously as part of the natural history of AMD or be triggered by the initiation of anti-VEGF treatment in the presence of large pigment epithelium detachments. There are currently no strategies to prevent their spontaneous development, and they constitute a dramatic complication of AMD. The prognosis is dependent on the size and location of the lesion, and the visual loss is irreversible.

7.
Elife ; 122024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722314

RESUMO

Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.


The backs of our eyes are lined with retinal pigment epithelial cells (or RPE cells for short). These cells provide nutrition to surrounding cells and contain a pigment called melanin that absorbs excess light that might interfere with vision. By doing so, they support the cells that receive light to enable vision. However, with age, RPE cells can become damaged and less able to support other cells. This can lead to a disease called age-related macular degeneration, which can cause blindness. One potential way to treat this disease is to transplant healthy RPE cells into eyes that have lost them. These healthy cells can be grown in the laboratory from human pluripotent stem cells, which have the capacity to turn into various specialist cells. Stem cell-derived RPE cells growing in a dish contain varying amounts of melanin, resulting in some being darker than others. This raised the question of whether pigment levels affect the function of RPE cells. However, it was difficult to compare single cells containing various amounts of pigment as most previous studies only analyzed large numbers of RPE cells mixed together. Nakai-Futatsugi et al. overcame this hurdle using a technique called Automated Live imaging and cell Picking System (also known as ALPS). More than 2300 stem cell-derived RPE cells were photographed individually and the color of each cell was recorded. The gene expression of each cell was then measured to investigate whether certain genes being switched on or off affects pigment levels and cell function. Analysis did not find a consistent pattern of gene expression underlying the pigmentation of RPE cells. Even gene expression related to the production of melanin was only slightly linked to the color of the cells. These findings suggests that the RPE cell color fluctuates and is not primarily determined by which genes are switched on or off. Future experiments are required to determine whether the findings are the same for RPE cells grown naturally in the eyes and whether different pigment levels affect their capacity to protect the rest of the eye.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pigmentação , Epitélio Pigmentado da Retina , Transcriptoma , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pigmentação/genética , Perfilação da Expressão Gênica , Células Cultivadas , Diferenciação Celular/genética
8.
Front Immunol ; 15: 1421175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091492

RESUMO

Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.


Assuntos
Fibrose , Granzimas , Degeneração Macular , Humanos , Animais , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/etiologia , Granzimas/metabolismo , Retina/patologia , Retina/metabolismo , Retina/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/metabolismo
9.
Genome Biol ; 25(1): 123, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760655

RESUMO

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Assuntos
Cromatina , Retina , Doenças Retinianas , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Cromatina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Regiões Promotoras Genéticas , Loci Gênicos , Peixe-Zebra/genética , Sequências Reguladoras de Ácido Nucleico , Genoma Humano
10.
Am J Ophthalmol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127396

RESUMO

PURPOSE: This study aims to explore genetic variants that potentially lead to outer retinal tubulation (ORT), estimate the prevalence of ORT in these candidate genes, and investigate the clinical etiology of ORT in patients with inherited retinal diseases (IRDs), with respect to each gene. DESIGN: Retrospective cohort study. METHODS: A retrospective cross-sectional review was conducted on 565 patients with molecular diagnoses of IRD, confirming the presence of ORT as noted in each patient's respective spectral-domain optical coherence tomography (SD-OCT) imaging. Using SD-OCT imaging, the presence of ORT was analyzed in relation to specific genetic variants and phenotypic characteristics. Outcomes included the observed ORT frequencies across two gene-specific cohorts: non- retinal pigment epithelium (RPE)-specific genes, and RPE-specific genes; and to investigate the analogous characteristics caused by variants in these genes. RESULTS: Among the 565 patients included in this study, 104 exhibited ORT on SD-OCT. We observed ORT frequencies among the following genes from our patient cohort: 100% (23/23) forCHM, 100%(2/2) forPNPLA6, 100% (4/4) forRCBTB1, 100% formtDNA[100% (4/4) forMT-TL1and 100% (1/1) formtDNAdeletion], 100% (1/1) forOAT, 95.2% (20/21) forCYP4V2, 72.7% (8/11) forCHMfemale carriers, 66.7% (2/3) forC1QTNF5, 57.1% (8/14) forPROM1, 53.8% (7/13) forPRPH2, 42.9% (3/7) forCERKL, 28.6% (2/7) forCDHR1, 20% (1/5) forRPE65, 4% (18/445) forABCA4.In contrast, ORT was not observed in any patients with photoreceptor-specific gene variants, such asRHO(n=13),USH2A(n=118),EYS(n=70),PDE6B(n=10),PDE6A(n=4),and others. CONCLUSION: These results illustrate a compelling association between the presence of ORT and IRDs caused by variants in RPE-specific genes, as well as non-RPE-specific genes. In contrast, IRDs caused by photoreceptor-specific genes are typically not associated with ORT occurrence. Further analysis revealed that ORT tends to manifest in IRDs with milder intraretinal pigment migration (IPM), a finding that is typically associated with RPE-specific genes. These findings regarding ORT, genetic factors, atrophic patterns in the fundus, and IPM provide valuable insight into the complex etiology of IRDs. Future prospective studies are needed to further explore the association and underlying mechanisms of ORT in these contexts.

11.
Cureus ; 15(12): e51325, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38288177

RESUMO

Central serous chorioretinopathy (CSC) is the buildup of fluid in the posterior pole distorting the vision resulting from either neurosensory or retinal pigment epithelial detachment. This is a case report of a 33-year-old female complaining of cloudiness in the left eye who was subsequently diagnosed with CSC using optical coherence tomography (OCT). Remission was observed in four months, possibly from ocular drop treatment or spontaneous. Our case report is unique as the incidence of CSC is more common in males, almost six times higher than in females. Also, the etiology of CSC in this case report is questionable because all the risks are excluded from our patient history.

13.
Biol. Res ; 48: 1-8, 2015. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950806

RESUMO

BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD) after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A) and in vitro angiogen-esis in retinal pigment epithelium (RPE). RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF). We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.


Assuntos
Humanos , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas do Olho/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Hipotermia , Fatores de Crescimento Neural/metabolismo , Fatores de Tempo , RNA Mensageiro/metabolismo , Linhagem Celular , Neovascularização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA