Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; 19(50): e2207637, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36707417

RESUMO

The application of reversible deactivation radical polymerization techniques in 3D printing is emerging as a powerful method to build "living" polymer networks, which can be easily postmodified with various functionalities. However, the building speed of these systems is still limited compared to commercial systems. Herein, a digital light processing (DLP)-based 3D printing system via photoinduced free radical-promoted cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers, which can build "living" objects by a commercial DLP 3D printer at a relatively fast building speed (12.99 cm h-1 ), is reported. The polymerization behavior and printing conditions are studied in detail. The livingness of the printed objects is demonstrated by spatially controlled postmodification with a fluorescent monomer.

2.
Small ; 19(43): e2301761, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381652

RESUMO

Their inherent directional information renders patchy particles interesting building blocks for advanced applications in materials science. In this study, a feasible method to fabricate patchy silicon dioxide microspheres is demonstrated, which they are able to equip with tailor-made polymeric materials as patches. Their fabrication method relies on a solid-state supported microcontact printing (µCP) routine optimized for the transfer of functional groups to capillary-active substrates, which is used to introduce amino functionalities as patches to a monolayer of particles. Acting as anchor groups for polymerization, photo-iniferter reversible addition-fragmentation chain-transfer (RAFT) is used to graft polymer from the patch areas. Accordingly, particles with poly(N-acryloyl morpholine), poly(N-isopropyl acrylamide), and poly(n-butyl acrylate) are prepared as representative acrylic acid-derived functional patch materials. To facilitate their handling in water, a passivation strategy of the particles for aqueous systems is introduced. The protocol introduced here, therefore, promises a vast degree of freedom in engineering the surface properties of highly functional patchy particles. This feature is unmatched by other techniques to fabricate anisotropic colloids. The method, thus, can be considered a platform technology, culminating in the fabrication of particles that possess locally precisely formed patches on particles at a low µm scale with a high material functionality.

3.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614322

RESUMO

For the first time, double stimuli-responsive properties of poly(N-isopropylacrylamide) (PNIPA) and poly(1-vinylimidazole) (PVIM) block copolymers in aqueous solutions were studied. The synthesis of PNIPA60-b-PVIM90 and PNIPA28-b-PVIM62-b-PNIPA29 was performed using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by size exclusion chromatography and 1H NMR spectroscopy. The conformational behavior of the polymers was studied using dynamic light scattering (DLS) and fluorescence spectroscopy (FS). It was found that PNIPA and block copolymers conformation and ability for self-assembly in aqueous medium below and above cloud point temperature depend on the locus of hydrophobic groups derived from the RAFT agent within the chain. Additionally, the length of PVIM block, its locus in the chain and charge perform an important role in the stabilization of macromolecular micelles and aggregates below and above cloud point temperature. At 25 °C the average hydrodynamic radius (Rh) of the block copolymer particles at pH 3 is lower than at pH 9 implying the self-assembling of macromolecules in the latter case. Cloud points of PNIPA60-b-PVIM90 are ~43 °C and ~37 °C at a pH of 3 and 9 and of PNIPA28-b-PVIM62-b-PNIPA29 they are ~35 °C and 31 °C at a pH of 3 and 9. Around cloud point independently of pH, the Rh value for triblock copolymer rises sharply, achieves the maximum value, then falls and reaches the constant value, while for diblock copolymer, it steadily grows after reaching cloud point. The information about polarity of microenvironment around polymer obtained by FS accords with DLS data.


Assuntos
Resinas Acrílicas , Polímeros , Polímeros/química , Resinas Acrílicas/química , Imidazóis
4.
Macromol Rapid Commun ; 38(14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544248

RESUMO

A direct and facile route toward semitelechelic polymers, end-functionalized with palladated sulfur-carbon-sulfur pincer (PdII -pincer) complexes is reported that avoids any post-polymerization step. Key to our methodology is the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization with functionalized chain-transfer agents. This strategy yields Pd end-group-functionalized materials with monomodal molar mass dispersities (D) of 1.18-1.44. The RAFT polymerization is investigated using a PdII -pincer chain-transfer agent for three classes of monomers: styrene, tert-butyl acrylate, and N-isopropylacrylamide. The ensuing PdII -pincer end-functionalized polymers are analyzed using 1 H NMR spectroscopy, gel-permeation chromatography, and elemental analysis. The RAFT polymerization methodology provides a direct pathway for the fabrication of PdII -pincer functionalized polymers with complete end-group functionalization.


Assuntos
Paládio/química , Polimerização , Polímeros/síntese química , Acrilamidas/química , Acrilatos/química , Polímeros/química , Estireno/química
5.
Macromol Rapid Commun ; 37(11): 911-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27079547

RESUMO

Linear poly(4-tert-butoxystyrene)-b-poly(4-vinylpyridine) (PtBOS-b-P4VP) diblock copolymers are synthesized using reversible addition-fragmentation chain transfer polymerization. The self-assembly of four different PtBOS-b-P4VP diblock copolymers is studied using small-angle X-ray scattering and transmission electron microscopy and a number of interesting observations are made. A tBOS62 -b-4VP28 diblock copolymer with a weight fraction P4VP of 0.21 shows a disordered morphology of P4VP spheres with liquid-like short-range order despite an estimated value of χN of the order of 50. Increasing the length of the 4VP block to tBOS62 -b-4VP199 results in a diblock copolymer with a weight fraction P4VP of 0.66. It forms a remarkably well-ordered lamellar structure. Likewise, a tBOS146 -b-4VP120 diblock copolymer with a weight fraction P4VP of 0.33 forms an extremely well-ordered hexagonal structure of P4VP cylinders. Increasing the P4VP block of this block copolymer to tBOS146 -b-4VP190 with a weight fraction P4VP of 0.44 results in a bicontinuous gyroid morphology despite the estimated strong segregation of χN≅150. These results are discussed in terms of the architectural dissimilarity of the two monomers, characterized by the presence of the large side group of PtBOS, and the previously reported value of the interaction parameter, χ≅0.39, for this polymer pair.


Assuntos
Poliestirenos/química , Poliestirenos/síntese química , Polivinil/química , Polivinil/síntese química , Estrutura Molecular
6.
Macromol Rapid Commun ; 36(13): 1277-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25881928

RESUMO

A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product.


Assuntos
Poliestirenos/síntese química , Emulsões , Radicais Livres/química , Peso Molecular , Polimerização
7.
Macromol Rapid Commun ; 36(7): 633-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475429

RESUMO

Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) has been reported to show both upper critical solution temperature (UCST) and lower critical solution temperature (LCST) behavior in presence of trivalent metal hexacyano anions, which is attractive for the development of smart materials. In this communication, the influence of the double thermoresponsive behavior of PDMAEMA driven by electrostatic interactions is investigated by comparing systems with [Co(CN)6 ](3-) , [Fe(CN)6 ](3-) , and [Cr(CN)6 ](3-) as trivalent anions. Furthermore, tuning of double thermoresponsive behavior of PDMAEMA by incorporating hydrophilic or hydrophobic comonomers is also discussed in the presence of [Fe(CN)6 ](3-) as trivalent ion.


Assuntos
Cianetos/química , Metais/química , Metacrilatos/química , Nylons/química , Ânions/química , Metacrilatos/síntese química , Nylons/síntese química , Polimerização , Eletricidade Estática , Temperatura , Termodinâmica
8.
Macromol Rapid Commun ; 35(2): 214-220, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115213

RESUMO

Well-defined homo and mPEGylated block (co)polymers of the commercially available unprotected 4-vinylphenylboronic acid (4-VBA) monomer are reported based on reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization kinetics are studied in detail for homo and block (co)polymerizations with different chain transfer agents (CTAs) to optimize the preparation of well-defined polymer structures, eventually leading to comparatively low dispersities (D ≤ 1.25). Subsequently, block (co)polymers with methoxy poly(ethylene glycol) mPEG-b-P(4-VBA) are prepared using a mPEG-functionalized CTA. The formed block copolymer mPEG114 -b-P(4-VBA)30 is demonstrated to be pH and glucose responsive as its micellization behavior is dictated by pH as well as the presence of glucose. The glucose-responsive pH window of mPEG114 -b-P(4-VBA)30 is found to be pH 9-10 based on the DLS and TEM measurement.


Assuntos
Ácidos Borônicos/química , Carboidratos/análise , Micelas , Polimerização , Compostos de Vinila/química , Glucose/análise , Concentração de Íons de Hidrogênio
9.
Nanomedicine ; 10(8): 1821-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24954384

RESUMO

The use of alginate based microcapsules to deliver drugs and cells with a minimal host interaction is increasingly being proposed. A proficient method to track the position of the microcapsules during such therapies, particularly if they are amenable to commonly used instrumentation, would greatly help the development of such treatments. Here we propose to label the microcapsules with gold nanoparticles to provide a bright contrast on small animal x-ray micro-CT systems enabling single microcapsule detection. The microcapsules preparation is based on a simple protocol using inexpensive compounds. This, combined with the widespread availability of micro-CT apparatus, renders our method more accessible compared with other methods. Our labeled microcapsules showed good mechanical stability and low cytotoxicity in-vitro. Our post-mortem rodent model data strongly suggest that the high signal intensity generated by the labeled microcapsules permits the use of a reduced radiation dose yielding a method fully compatible with longitudinal in-vivo studies. FROM THE CLINICAL EDITOR: The authors of this study report the development of a micro-CT based tracking method of alginate-based microcapsules by incorporating gold nanoparticles in the microcapsules. They demonstrate the feasibility of this system in rodent models, where due to the high signal intensity, even reduced radiation dose is sufficient to track these particles, providing a simple and effective method to track these commonly used microcapsules and allowing longitudinal studies.


Assuntos
Alginatos/química , Cápsulas/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Tomografia Computadorizada por Raios X
10.
J Colloid Interface Sci ; 676: 396-407, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39033674

RESUMO

HYPOTHESIS: Pyrene derivatives are effective motifs when designing graphene-philic surfactants, enabling the use of hydrophobic graphene-based nanomaterials in waterborne formulations. Hence, novel pyrene end-functionalized polymeric stabilizers show promise for stabilizing aqueous graphene nanomaterial dispersions, and offer benefits over traditional small molecule surfactants. EXPERIMENTS: Pyrene end-functionalized poly(methacrylic acid) (Py-PMAAn, where n = 68 to 128) was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization of MAA using a pyrene-containing RAFT chain-transfer agent. These polymers were evaluated as aqueous graphene nanoplatelet (GNP) stabilizers. Subsequently, polymer-stabilized GNPs were formulated into film-forming polymer latex dispersions and the properties of the resulting GNP-containing films measured. FINDINGS: Py-PMAAn homopolymers with well-defined molecular weights were prepared via RAFT solution polymerization. They served as efficient stabilizers for aqueous GNP dispersions and performed better than a traditional small molecule surfactant and non-functionalized PMAA, especially at higher pH and with higher molecular weight polymers. The use of Py-PMAAn allowed GNPs to be readily formulated into waterborne latex coatings. When compared to controls, the resulting films were significantly reinforced due to the improved homogeneity of dried nanocomposite films and chain entanglement between the polymer matrix and stabilizers. Thus, the ability to readily incorporate GNPs into aqueous formulations and enhance GNP/polymer matrix interfaces was demonstrated for these novel amphiphilic stabilizers.

11.
Polymers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160544

RESUMO

Reversible addition-fragmentation chain transfer polymerization was successfully applied to the synthesis of the gradient copolymer of acrylic acid and vinyl acetate in the selective solvent. The gradient degree of the copolymer was varied by the monomer feed. The monomer conversion was found to affect the ability of the copolymer to self-assemble in aqueous solutions in narrowly dispersed micelles with an average hydrodynamic radius of about 250 nm. Furthermore, the synthesized copolymers also tended to self-assemble throughout copolymerization in the selective solvent.

12.
Polymers (Basel) ; 12(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455766

RESUMO

Polymeric nanomaterials made from amphiphilic block copolymers are increasingly used in the treatment of tumor tissues. In this work, we firstly synthesized the amphiphilic block copolymer PBnMA-b-P(BAPMA-co-PEGMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization using benzyl methacrylate (BnMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA), and 3-((tert-butoxycarbonyl)amino)propyl methacrylate (BAPMA) as the monomers. Subsequently, PBnMA-b-P(APMA-co-PEGMA)@NIR 800 with photothermal conversion property was obtained by deprotection of the tert-butoxycarbonyl (BOC) groups of PBAPMA chains with trifluoroacetic acid (TFA) and post-modification with carboxyl functionalized ketocyanine dye (NIR 800), and it could self-assemble into micelles in CH3OH/water mixed solvent. The NIR photothermal conversion property of the post-modified micelles were investigated. Under irradiation with NIR light (λmax = 810 nm, 0.028 W/cm2) for 1 h, the temperature of the modified micelles aqueous solution increased to 53 °C from 20 °C, which showed the excellent NIR photothermal conversion property.

13.
Carbohydr Polym ; 224: 115153, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472862

RESUMO

A multi-reactive polysaccharide-based transurf (acting both as macro-Chain Transfer Agent and stabilizer) was used to confine RAFT polymerization of methyl methacrylate (MMA) at the oil/water (o/w) miniemulsion interface. Dithiobenzoate groups and hydrophobic aliphatic side chains were introduced onto dextran, conferring it both transfer agent properties and ability to stabilize direct miniemulsion of MMA in the presence of a biocompatible oil, used as co-stabilizer. Because of their amphiphilic character, transurfs were initially adsorbed at the (o/w) interface and their reactive sites mediated RAFT polymerization via the R-group approach. PMMA-grafted dextran glycopolymers were consequently produced at the o/w interface, thus leading to dextran coverage/PMMA shell/oily core nanocapsules (NCs) as evidenced by Cryo-TEM analyses. The influence of dextran-based transurf chemistry and oil amount on MMA RAFT polymerization control was investigated. Positive preliminary results on NCs cytotoxicity suggest the potential of these objects for biomedical applications.

14.
Polymers (Basel) ; 11(6)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234554

RESUMO

Atom transfer radical polyaddition (ATRPA) was utilized herein to synthesize a specific functional polyester. We conducted ATRPA of 4-vinylbenzyl 2-bromo-2-phenylacetate (VBBPA) inimer and successfully obtained a linear type poly(VBBPA) (PVBBPA) polyester with benzylic bromides along the backbone. To obtain a novel amphiphilic polymer bottlebrush, however, the lateral ATRP chain extension of PVBBPA with N-vinyl pyrrolidone (NVP) met the problem of quantitative dimerization. By replacing the bromides to xanthate moieties efficiently, we thus observed a pseudo linear first order reversible addition-fragmentation chain transfer (RAFT) polymerization to obtain novel poly(4-vinylbenzyl-2-phenylacetate)-g-poly(NVP) (PVBPA-g-PNVP) amphiphilic polymer bottlebrushes. The critical micelle concentration (CMC) and particle size of the amphiphilic polymer bottlebrushes were characterized by fluorescence spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM) (CMCs < 0.5 mg/mL; particle sizes = ca. 100 nm). Toward drug delivery application, we examined release profiles using a model drug of Nile red at different pH environments (3, 5, and 7). Eventually, low cytotoxicity and well cell uptake of the Madin-Darby Canine Kidney Epithelial (MDCK) for the polymer bottlebrush micelles were demonstrated.

15.
Polymers (Basel) ; 10(3)2018 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30966336

RESUMO

Poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPSNa) was prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization. An ionic liquid polymer (PAMPSP4448) was then prepared by exchanging the pendant counter cation from sodium (Na⁺) to tributyl-n-octylphosphonium (P4448⁺). We studied the ultrasound- and thermo-responsive behaviors of PAMPSP4448 in water. When the aqueous PAMPSP4448 solution was heated from 5 to 50 °C, the solution was always transparent with 100% transmittance. Unimers and interpolymer aggregates coexisted in water in the temperature range 5⁻50 °C. Generally, hydrogen bonding interactions are broken as the temperature increases due to increased molecular motion. Above 25 °C, the size of the interpolymer aggregates decreased, because hydrophobic interactions inside them were strengthened by dehydration accompanying cleavage of hydrogen bonds between water molecules and the pendant amide or sulfonate groups in PAMPSP4448. Above 25 °C, sonication of the aqueous solution induced an increase in the collision frequency of the aggregates. This promoted hydrophobic interactions between the aggregates to form larger aggregates, and the aqueous solution became turbid. When the temperature was decreased below 8 °C, hydrogen bonds reformed between water molecules and the pendant amide or sulfonate groups, allowing PAMPSP4448 to redissolve in water to form a transparent solution. The solution could be repeatedly controlled between turbidity and transparency by sonication and cooling, respectively.

16.
Colloids Surf B Biointerfaces ; 161: 42-50, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040833

RESUMO

A mixed self-assembled monolayer (SAM) of an initiator (3-(2-bromo-2-isobutyryloxy)propyl triethoxysilane) for atom transfer radical polymerization (ATRP) and an agent (6-(triethoxysilyl)hexyl 2-(((methylthio)carbonothioyl)thio)-2-phenylacetate) for reversible addition-fragmentation chain transfer (RAFT) polymerization was constructed on the surface of a silicon wafer or glass plate by a silane coupling reaction. When a UV light at 254nm was irradiated at the mixed SAM through a photomask, the surface density of the bromine atom at the end of BPE in the irradiated region was drastically reduced by UV-driven scission of the BrC bond, as observed by X-ray photoelectron spectroscopy. Consequently, the surface-initiated (SI)-ATRP of 2-ethylhexyl methacrylate (EHMA) was used to easily construct the poly(EHMA) (PEHMA) brush domain. Subsequently, SI-RAFT polymerization of a zwitterionic vinyl monomer, carboxymethyl betaine (CMB), was performed. Using the sequential polymerization, the PCMB and PEHMA brush domains on the solid substrate could be very easily patterned. Patterning proteins and cells with the binary polymer brush is expected because the PCMB brush indicated strong suppression of protein adsorption and cell adhesion, and the PEHMA brush had non-polar properties. This technique is very simple and useful for regulating the shape and size of bio-fouling and anti-biofouling domains on solid surfaces.


Assuntos
Materiais Biocompatíveis/química , Polimerização/efeitos da radiação , Polímeros/química , Raios Ultravioleta , Adsorção/efeitos da radiação , Animais , Betaína/química , Materiais Biocompatíveis/farmacologia , Incrustação Biológica/prevenção & controle , Adesão Celular/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Espectroscopia Fotoeletrônica , Propriedades de Superfície
17.
Polymers (Basel) ; 9(1)2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30970707

RESUMO

60Co γ-ray irradiation-initiated reversible addition⁻fragmentation chain transfer (RAFT) polymerization at room temperature with 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as the chain transfer agent was first applied to acrylonitrile (AN) polymerization, providing a "green" platform for preparing polyacrylonitrile (PAN)-based carbon fibers using an environment-friendly energy source. Various effects of dose rate, molar ratio of the monomer to the chain transfer agent, monomer concentration and reaction time on the AN polymerization behaviors were performed to improve the controllability of molecular the weight and molecular weight distribution of the obtained PAN. The feature of the controlled polymerization was proven by the first-order kinetics, linear increase of the molecular weight with the monomer conversion and a successful chain-extension experiment. The molecular weight and molecular weight distribution of PAN were characterized by size exclusion chromatography (SEC). ¹H NMR and Matrix assisted laser desorption ionization/time of flight mass spectra (MALDI-TOF-MS) confirmed the chain-end functionality of PAN, which also was supported by the successful chain-extension experiments of original PANs with acrylonitrile and styrene as the second monomers respectively.

18.
J Hazard Mater ; 278: 134-43, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24956578

RESUMO

A novel Ce(III) ion-imprinted polymer (Ce(III)-IIP) has been prepared by surface imprinting technique with reversible addition-fragmentation chain transfer (RAFT) polymerization based on support matrix of SBA-15. The prepared adsorbent is characterized by FT-IR, XRD, SEM, TEM, nitrogen adsorption-desorption, GPC, and TGA. The results suggest that the surface imprinted polymer synthesized by RAFT is a thin layer. For adsorption experiments, Ce(III)-IIP is investigated to remove Ce(III) by column study at different flow rates, initial metal ion concentrations, and adsorption temperature. The dynamic kinetics analyses reveal that the overall adsorption process is successfully fitted with the pseudo-first-order kinetic model and the equilibrium time was 60 min. Meanwhile, the experimental data is in good agreement with Thomas model. Ce(III)-IIP has the excellent selectivity and regenerate property. Meanwhile, the proposed method has been successfully applied in the removal of Ce(III) in natural water samples with satisfactory results. All the results suggest that Ce(III)-IIP could be used as an excellent adsorbent for efficient removal of Ce(III) from aqueous solution.


Assuntos
Cério/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Adsorção , Polimerização , Soluções , Temperatura , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA