Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 245, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443809

RESUMO

We investigated whole blood and hepatic mRNA expressions of immune genes and rumen microbiome of crossbred beef steers with divergent residual feed intake phenotype to identify relevant biological processes underpinning feed efficiency in beef cattle. Low-RFI beef steers (n = 20; RFI = - 1.83 kg/d) and high-RFI beef steers (n = 20; RFI = + 2.12 kg/d) were identified from a group of 108 growing crossbred beef steers (average BW = 282 ± 30.4 kg) fed a high-forage total mixed ration after a 70-d performance testing period. At the end of the 70-d testing period, liver biopsies and blood samples were collected for total RNA extraction and cDNA synthesis. Rumen fluid samples were also collected for analysis of the rumen microbial community. The mRNA expression of 84 genes related to innate and adaptive immunity was analyzed using pathway-focused PCR-based arrays. Differentially expressed genes were determined using P-value ≤ 0.05 and fold change (FC) ≥ 1.5 (in whole blood) or ≥ 2.0 (in the liver). Gene ontology analysis of the differentially expressed genes revealed that pathways related to pattern recognition receptor activity, positive regulation of phagocytosis, positive regulation of vitamin metabolic process, vascular endothelial growth factor production, positive regulation of epithelial tube formation and T-helper cell differentiation were significantly enriched (FDR < 0.05) in low-RFI steers. In the rumen, the relative abundance of PeH15, Arthrobacter, Moryella, Weissella, and Muribaculaceae was enriched in low-RFI steers, while Methanobrevibacter, Bacteroidales_BS11_gut_group, Bacteroides and Clostridium_sensu_stricto_1 were reduced. In conclusion, our study found that low-RFI beef steers exhibit increased mRNA expression of genes related to immune cell functions in whole blood and liver tissues, specifically those involved in pathogen recognition and phagocytosis regulation. Additionally, these low-RFI steers showed differences in the relative abundance of some microbial taxa which may partially account for their improved feed efficiency compared to high-RFI steers.


Assuntos
Rúmen , Fator A de Crescimento do Endotélio Vascular , Animais , Bovinos , Fenótipo , Bacteroidetes , Ingestão de Alimentos , RNA Mensageiro
2.
BMC Genomics ; 25(1): 258, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454325

RESUMO

The interactions between the rumen microbiota and the host are crucial for the digestive and absorptive processes of ruminants, and they are heavily influenced by the climatic conditions of their habitat. Owing to the harsh conditions of the high-altitude habitat, little is known about how ruminants regulate the host transcriptome and the composition of their rumen microbiota. Using the model species of goats, we examined the variations in the rumen microbiota, transcriptome regulation, and climate of the environment between high altitude (Lhasa, Xizang; 3650 m) and low altitude (Chengdu, Sichuan, China; 500 m) goats. The results of 16 S rRNA sequencing revealed variations in the abundance, diversity, and composition of rumen microbiota. Papillibacter, Quinella, and Saccharofermentans were chosen as potential microbes for the adaptation of Xizang goats to the harsh climate of the plateau by the Spearman correlation study of climate and microbiota. Based on rumen transcriptome sequencing analysis, 244 genes were found to be differentially expressed between Xizang goats and low-altitude goats, with 127 genes showing up-regulation and 117 genes showing down-regulation. SLC26A9, GPX3, ARRDC4, and COX1 were identified as potential candidates for plateau adaptation in Xizang goats. Moreover, the metabolism of fatty acids, arachidonic acids, pathway involving cytokines and their receptors could be essential for adaptation to plateau hypoxia and cold endurance. The expression of GPX3, a gene linked to plateau acclimatization in Xizang goats, was linked to the abundance of Anaerovibrio, and the expression of SLC26A9 was linked to the quantity of Selenomonas, according to ruminal microbiota and host Spearman correlation analysis. Our findings imply that in order to adapt harsh plateau conditions, Xizang goats have evolved to maximize digestion and absorption as well as to have a rumen microbiota suitable for the composition of their diet.


Assuntos
Cabras , Microbiota , Animais , Cabras/metabolismo , Transcriptoma , Rúmen/metabolismo , Microbiota/genética , Adaptação Psicológica
3.
Microb Pathog ; 187: 106509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185451

RESUMO

BACKGROUND: Mastitis is a serious disease which affects animal husbandry, particularly in cow breeding. The etiology of mastitis is complex and its pathological mechanism is not yet fully understood. Our previous research in clinical investigation has revealed that subclinical ketosis can increase the number of somatic cell counts (SCC) in milk, although the underlying mechanism remains unclear. Recent studies have further confirmed the significant role of mastitis. RESULTS: In this study, we aimed to examine the SCC, rumen microbiota, and metabolites in the milkmen of cows with subclinical ketosis. Additionally, we conducted a rumen microbiota transplant into mice to investigate the potential association between rumen microbiota disturbance and mastitis induced by subclinical ketosis in dairy cows. The study has found that cows with subclinical ketosis have a higher SCC in their milk compared to healthy cows. Additionally, there were significant differences in the rumen microbiota and the level of volatile fatty acid (VFA) between cows with subclinical ketosis and healthy cows. Moreover, transplanting the rumen microbiota from subclinical ketosis and mastitis cows into mice can induce mammary inflammation and liver function damage than transplanting the rumen flora from healthy dairy cows. CONCLUSIONS: In addition to the infection of mammary gland by pathogenic microorganisms, there is also an endogenous therapeutic pathway mediated by rumen microbiota. Targeted rumen microbiota modulation may be an effective way to prevent and control mastitis in dairy cows.


Assuntos
Cetose , Mastite Bovina , Microbiota , Feminino , Animais , Bovinos , Camundongos , Humanos , Mastite Bovina/patologia , Rúmen/metabolismo , Cetose/metabolismo , Cetose/veterinária , Leite , Lactação
4.
Microb Pathog ; 195: 106887, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39186965

RESUMO

This study investigated the impact of wheat processing methods (wheat flour vs wheat pellets) on the growth performance, serum biochemical parameters, and rumen microbiome composition in sheep. Results indicated that feeding of wheat flour resulted in significantly higher terminal weight and average daily gain (P < 0.05) and lower cholesterol and ALP04 levels (P < 0.05) in sheep compared to those fed wheat pellets. Analysis of 16s rDNA high-throughput sequencing data revealed significantly higher microbial richness (Chao1 index) in the rumen of sheep fed wheat flour (P < 0.05), even though the phylum-level composition dominated by Firmicutes, Bacteroidetes, and Proteobacteria was similar in both groups of sheep. Notably, sheep fed wheat flour were found to have a significantly higher relative abundance of Bacteroidetes (P < 0.05). At the genus level, Succinivibrionaceae_UCG-001 and Prevotella_1 were significantly more abundant in the rumen of sheep fed wheat flour (P < 0.05). Correlation analysis identified that both terminal weight and average daily gain were positively correlated with ruminal abundance of Bacteroidetes and Prevotella_1, while ALP04 was negatively correlated with the abundance of these taxa. Functional prediction using PICRUSt2 indicated enrichment of pathways related to the ABC-type glycerol-3-phosphate transport system, and periplasmic components in both wheat flour and pellet fed sheep. Overall, these findings suggest that dietary wheat flour modulates rumen microbiota composition, and improves growth performance in sheep.

5.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825118

RESUMO

In modern breeding systems, cows are subjected to many stress factors. Animals fed with a high-grain diet may have a decreased rumen pH, which would lead to subacute ruminal acidosis syndrome. The aim of this study was to investigate the evolution of microbial community composition in cows undergoing a dietary stress challenge. Twelve cows were subjected to a challenge period consisted in a rapid change of ration, from a normal (45.4:54.6 forage: concentrate) to a high-grain content diet (24.8:75.2 forage: concentrate) to induce sub-acute ruminal acidosis. Individual rumen fluid content samples were collected before (T0), and during the challenge (T3, T14, T28). DNA from rumen contents was extracted, purified, and sequenced to evaluate Bacterial populations and sequencing was performed on Illumina MiSeq. The effect of animal conditions on rumen microbial community was quantified through a linear mixed model. The acidogenic diet created 2 main clusters: ruminal hypomotility (RH) and milk fat depression (MFD). The microbial composition did not differ in T0 between the 2 groups, while during the challenge Ruminococcus spp., Treponema spp., Methanobrevibacter spp., and Methanosphaera spp. concentrations increased in RH cows; Succinivibrio spp. and Butyrivibrio spp. concentrations increased in MFD cows. Prevotella spp. and Ruminococcus spp., were negatively correlated, while Christenellaceae family were positively correlated with both Methanobrevibacter spp. and Methanosphaera spp. Moreover, the same diet affected differently cows' microbiota composition, underlying the impact of the host effect. Other studies are necessary to deepen the relationship between microbiota composition and host.

6.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928432

RESUMO

During the adaptive evolution of animals, the host and its gut microbiota co-adapt to different elevations. Currently, there are few reports on the rumen microbiota-hepato-intestinal axis of Tibetan sheep at different altitudes. Therefore, the purpose of this study was to explore the regulatory effect of rumen microorganism-volatile fatty acids (VFAs)-VFAs transporter gene interactions on the key enzymes and genes related to gluconeogenesis in Tibetan sheep. The rumen fermentation parameters, rumen microbial densities, liver gluconeogenesis activity and related genes were determined and analyzed using gas chromatography, RT-qPCR and other research methods. Correlation analysis revealed a reciprocal relationship among rumen microflora-VFAs-hepatic gluconeogenesis in Tibetan sheep at different altitudes. Among the microbiota, Ruminococcus flavefaciens (R. flavefaciens), Ruminococcus albus (R. albus), Fibrobactersuccinogenes and Ruminobacter amylophilus (R. amylophilus) were significantly correlated with propionic acid (p < 0.05), while propionic acid was significantly correlated with the transport genes monocarboxylate transporter 4 (MCT4) and anion exchanger 2 (AE2) (p < 0.05). Propionic acid was significantly correlated with key enzymes such as pyruvate carboxylase, phosphoenolpyruvic acid carboxylase and glucose (Glu) in the gluconeogenesis pathway (p < 0.05). Additionally, the expressions of these genes were significantly correlated with those of the related genes, namely, forkhead box protein O1 (FOXO1) and mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) (p < 0.05). The results showed that rumen microbiota densities differed at different altitudes, and the metabolically produced VFA contents differed, which led to adaptive changes in the key enzyme activities of gluconeogenesis and the expressions of related genes.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Gluconeogênese , Fígado , Rúmen , Animais , Gluconeogênese/genética , Ovinos/microbiologia , Rúmen/microbiologia , Rúmen/metabolismo , Fígado/metabolismo , Ácidos Graxos Voláteis/metabolismo , Tibet , Altitude , Adaptação Fisiológica , Fermentação
7.
Artigo em Inglês | MEDLINE | ID: mdl-38958108

RESUMO

This study investigated the effects of negative energy balance (NEB) on perinatal ewes, with a focus on changes in growth performance, serum biochemical parameters, rumen fermentation, ruminal bacteria composition, placental phenotype-related indicators, and expression levels of genes related to placental function. Twenty ewes at 130 days of gestation were randomly allocated to either the positive energy balance (PEB) or NEB groups. In the experiment, ewes in the PEB group were fed the same amount as their intake during the pre-feeding baseline period, while ewes in the NEB group were restricted to 70% of their individual baseline feed intake. The experiment was conducted until 42 days postpartum, and five double-lamb ewes per group were selected for slaughter. The results demonstrated that NEB led to a significant decrease in body weight, carcass weight, and the birth and weaning weights of lambs (P < 0.05). Additionally, NEB caused alterations in serum biochemical parameters, such as increased non-esterified fatty acids and ß-hydroxybutyrate levels and decreased cholesterol and albumin levels (P < 0.05). Rumen fermentation and epithelial parameters were also affected, with a reduction in the concentrations of acetic acid, butyric acid, total acid and a decrease in the length of the rumen papilla (P < 0.05). Moreover, NEB induced changes in the structure and composition of ruminal bacteria, with significant differences in α-diversity indices and rumen microbial community composition (P < 0.05). Gene expression in rumen papilla and ewe placenta was also affected, impacting genes associated with glucose and amino acid transport, proliferation, apoptosis, and angiogenesis (P < 0.05). These findings screened the key microbiota in the rumen of ewes following NEB and highlighted the critical genes associated with rumen function. Furthermore, this study revealed the impact of NEB on placental function in ewes, providing a foundation for investigating how nutrition in ewes influences reproductive performance. This research demonstrates how nutrition regulates reproductive performance by considering the combined perspectives of rumen microbiota and placental function.

8.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724295

RESUMO

AIMS: This trial was performed to investigate the effects of combined feeding of Candida utilis CICC 31170, Bacillus coagulans R11, and Lactobacillus acidophilus NCFM and a multi-enzyme complex on the growth performance, immune parameters, feed digestibility, and rumen microbiota of weaned goats. METHODS AND RESULTS: Thirty weaned goats were randomly divided into CON, PRB, and COB groups and fed different diets. End weight and ADG increased significantly in the PRB and COB groups (P < 0.05), and ADFI increased significantly in COB (P < 0.05). On day 80, there was a significant increase in IL-10 content in PRB and COB compared to the CON (P < 0.05). Highly significant increases in rumen papilla width, epithelial cell thickness, stratum spinosum+basale thickness, and stratum corneum thickness were found in PRB and COB (P < 0.05). COB group significantly increased the gene expression of HMGCL and MCT1 in rumen epithelium (P < 0.001). The COB group had the tendency to increase the feed digestibility of dry matter and crude fat compared with the CON group (P < 0.10). The abundance of Prevotellaceae_unclassified was significantly higher in PRB (P < 0.05), and the abundance of Fibrobacteres was significantly higher in COB in comparison to those in CON (P < 0.05). CONCLUSIONS: The results indicate that the dietary potential probiotics and enzymes complex could modulate the growth performance, immunity, feed digestibility, and rumen microbiota in weaned goats.


Assuntos
Microbiota , Probióticos , Animais , Rúmen/metabolismo , Cabras , Ração Animal/análise , Dieta/veterinária
9.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994654

RESUMO

AIM: The purpose of this study was to determine the mechanism of Astragalus activity on the immune function, rumen microbiota structure, and rumen fermentation of early-weaned lambs. METHODS AND RESULTS: Thirty healthy early-weaned lambs with similar body weights (17.42 ± 2.02 kg) were selected for the feeding experiment. The control group (KB) was fed a basal diet, and the Astragalus group (HQ) was fed 0.3% Astragalus additive on the basis of a basic diet. The formal trial period was 60 days. The results showed that the concentrations of blood immunoglobulin A (IgA) and immunoglobulin M (IgM) in the HQ group were significantly higher than those in the KB group (P < 0.05). Compared with the KB group, the concentrations of acetic acid, butyric acid, and total volatile fatty acids (VFAs) in the HQ group were higher (P < 0.01). The expression levels of the rumen epithelial-related genes MCT1, MCT4, NHE2, and ZO1 in the Astragalus group were significantly higher than those in the KB group (P < 0.05). 16S rRNA analysis showed that at the phylum level, Bacteroidetes in the HQ group significantly increased (P < 0.01); at the genus level, Prevotella (P < 0.01) and Succiniclasticum (P < 0.01) in the HQ group were found at significantly higher abundances than those in the KB group, and the results of microbiota gene and function prediction showed that "energy metabolism," "glycan biosynthesis and metabolic" pathways were significantly enriched in the HQ group (P < 0.05). CONCLUSION: As a feed additive, Astragalus can improve the immunity of early-weaned lambs, the structure of the rumen microbiota of lambs, and the fermentation capacity of the rumen.


Assuntos
Microbiota , Rúmen , Ovinos , Animais , Fermentação , Rúmen/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Dieta/veterinária , Carneiro Doméstico , Ácido Butírico , Imunidade , Ração Animal/análise
10.
Appl Microbiol Biotechnol ; 107(15): 4961-4971, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306709

RESUMO

Paper mulberry (Broussonetia papyrifera), as a new woody forage with high-protein characteristic, is being widely used in ruminant feeding. However, little is known about the comprehensive microbiota picture of whole ruminal niches (liquid, solid, and epithelium) under paper mulberry diet. To gain a better understanding of feeding paper mulberry on the rumen microbiota, the effects of fresh paper mulberry, paper mulberry silage, or a conventional high-protein alfalfa silage on rumen fermentation products and microbiota in rumen niches of Hu lambs were studied. Forty-five Hu lambs were randomly divided into 3 treatments with 15 replicates in each treatment. No significant difference was observed among treatments in the average daily gain (ADG). The fresh paper mulberry treatment had lower (P < 0.05) pH and higher (P < 0.05) total volatile fatty acids (TVFA) compared with silage treatments, but the fermentation parameters did not show significant differences between paper mulberry silage and alfalfa silage treatments. The Shannon index did not show a significant difference (P < 0.05) among treatments except between fresh paper mulberry and alfalfa silage treatment in rumen epithelial niches. Butyrivibrio and Treponema were the predominant genera in the rumen epithelial fraction, while Prevotella and Rikenellaceae_RC9 dominated in both rumen liquid and solid fractions. These results indicated the paper mulberry supplement did not have distinct impact on the microbial diversity and growth performance compared with alfalfa silage, especially for paper mulberry silage, which might help us develop an alternative animal feeding strategy of replacing alfalfa with paper mulberry. KEY POINTS: • Feeding paper mulberry silage did not show significant impact on the growth performance compared with alfalfa silage treatment. • Feeding fresh paper mulberry reduced rumen pH value and increased total volatile fatty acid. • The microbial diversity did not show significant difference among treatments.


Assuntos
Broussonetia , Microbiota , Morus , Feminino , Animais , Ovinos , Leite , Lactação , Rúmen/metabolismo , Dieta/veterinária , Silagem , Ração Animal/análise , Ácidos Graxos Voláteis/metabolismo , Fermentação , Medicago sativa
11.
Appl Microbiol Biotechnol ; 107(15): 4887-4902, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37306708

RESUMO

Variation exists in milk protein concentration of dairy cows of the same breed that are fed and managed in the same environment, and little information was available on this variation which might be attributed to differences in rumen microbial composition as well as their fermentation metabolites. This study is aimed at investigating the difference in the composition and functions of rumen microbiota as well as fermentation metabolites in Holstein cows with high and low milk protein concentrations. In this study, 20 lactating Holstein cows on the same diet were divided into two groups (10 cows each), high degree of milk protein group (HD), and low degree of milk protein (LD) concentrations based on previous milk composition history. Rumen content samples were obtained to explore the rumen fermentation parameters and rumen microbial composition. Shotgun metagenomics sequencing was employed to investigate the rumen microbial composition and sequences were assembled via the metagenomics binning technique. Metagenomics revealed that 6 Archaea genera, 5 Bacteria genera, 7 Eukaryota genera, and 7 virus genera differed significantly between the HD and LD group. The analysis of metagenome-assembled genomes (MAGs) showed that 2 genera (g__Eubacterium_H and g__Dialister) were significantly enriched (P < 0.05, linear discriminant analysis (LDA) > 2) in the HD group. However, the LD group recorded an increased abundance (P < 0.05, LDA > 2) of 8 genera (g__CAG-603, g__UBA2922, g__Ga6A1, g__RUG13091, g__Bradyrhizobium, g__Sediminibacterium, g__UBA6382, and g__Succinivibrio) when compared to the HD group. Furthermore, investigation of the KEGG genes revealed an upregulation in a higher number of genes associated with nitrogen metabolism and lysine biosynthesis pathways in the HD group as compared to the LD group. Therefore, the high milk protein concentration in the HD group could be explained by an increased ammonia synthesis by ruminal microbes which were converted to microbial amino acids and microbial protein (MCP) in presence of an increased energy source made possible by higher activities of carbohydrate-active enzymes (CAZymes). This MCP gets absorbed in the small intestine as amino acids and might be utilized for the synthesis of milk protein. KEY POINTS: • Rumen microbiota and their functions differed between cows with high milk protein % and those with low milk protein %. • The rumen microbiome of cows with high milk protein recorded a higher number of enriched genes linked to the nitrogen metabolism pathway and lysine biosynthesis pathway. • The activities of carbohydrate-active enzymes were found to be higher in the rumen of cows with high milk protein %.


Assuntos
Microbiota , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Lactação , Rúmen/microbiologia , Metagenômica , Lisina/metabolismo , Dieta/veterinária , Carboidratos , Nitrogênio/metabolismo , Fermentação , Ração Animal/análise
12.
Anim Biotechnol ; 34(6): 1919-1930, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35416756

RESUMO

This study aimed to investigate whether lactating Hu sheep's dietary protein levels could generate dynamic effects on the performance of their offspring. Twelve ewes with similar parity were fed iso-energy diets which contained different protein levels (P1: 9.82%, P2: 10.99%) (n = 6), and the corresponding offspring were divided into SP1 and SP2 (n = 12). At 60 days, half of the lambs were harvested for further study: the carcass weight (p = 0.043) and dressing percentage (p = 0.004) in the SP2 group were significantly higher than SP1. The acetic acid (p = 0.007), propionic acid (p = 0.003), butyric acid (p < 0.001) and volatile fatty acids (p < 0.001) in rumen fluid of SP2 were significantly lower than SP1. The expression of MCT2 (p = 0.024), ACSS1 (p = 0.039) and NHE3 (p = 0.006) in the rumen of SP2 was lower than SP1, while the HMGCS1 (p = 0.026), HMGCR (p = 0.024) and Na+/K+-ATPase (p = 0.020) was higher than SP1. The three dominant phyla in the rumen are Bacteroidetes, Proteobacteria and Firmicutes. The membrane transport, amino acid metabolism and carbohydrate metabolism of SP1 were relatively enhanced, the replication and repair function of SP2 was relatively enhanced. To sum up, the increase of dietary protein level significantly increased the carcass weight and dressing percentage of offspring and had significant effects on rumen volatile fatty acids, acetic acid activation and cholesterol synthesis related genes. HIGHLIGHTSIn the early feeding period, the difference in ADG of lambs was mainly caused by the sucking effect.The increase in dietary protein level of ewes significantly increased the carcass weight and dressing percentage of offspring.The dietary protein level of ewes significantly affected the volatile fatty acids (VFAs) and genes related to acetic acid activation and cholesterol synthesis in the rumen of their offspring.The membrane transport, amino acid metabolism and carbohydrate metabolism of the offspring of ewes fed with a low protein diet were relatively enhanced.The replication and repair function of the offspring of ewes fed with a high protein diet was relatively strengthened.


Assuntos
Lactação , Rúmen , Gravidez , Animais , Ovinos , Feminino , Rúmen/metabolismo , Dieta/veterinária , Ácidos Graxos Voláteis , Acetatos/análise , Acetatos/metabolismo , Proteínas Alimentares/análise , Proteínas Alimentares/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Colesterol/metabolismo , Ração Animal/análise , Leite/química , Suplementos Nutricionais
13.
Anim Biotechnol ; 34(4): 761-774, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31081473

RESUMO

Black Bengal goats possess a rich source of rumen microbiota that helps them to adapt for the better utilization of plant biomaterial into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiota. Therefore the study was designed in order to explore the taxonomic profile of rumen microbial communities and potential biomass degradation enzymes present in the rumen of back Bengal goat using Illumina Nextseq-500 platform. A total of 83.18 million high-quality reads were generated and bioinformatics analysis was performed using various tools and subsequently, the predicted ORFs along with the rRNA containing contigs were then uploaded to MG-RAST to analyze taxonomic and functional profiling. The results highlighted that Bacteriodetes (41.38-59.74%) were the most abundant phyla followed by Firmicutes (30.59-39.96%), Proteobacteria (5.07-7.61%), Euryarcheaota (0.71-7.41%), Actinobacteria (2.05-2.75%). Genes that encode glycoside hydrolases (GHs) had the highest number of CAZymes, and accounted for (39.73-37.88%) of all CAZymes in goat rumen. The GT families were the second-most abundant in CAZymes (23.73-23.11%) and followed by Carbohydrate Binding module Domain (17.65-15.61%), Carbohydrate Esterase (12.90-11.95%). This study indicated that goat rumen had complex functional microorganisms produce numerous CAZymes, and that can be further effectively utilised for applied ruminant research and industry based applications.


Assuntos
Cabras , Microbiota , Humanos , Animais , Cabras/genética , Rúmen , Metagenoma/genética , Microbiota/genética , Ruminantes/genética , Carboidratos
14.
J Dairy Sci ; 106(7): 4634-4649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225586

RESUMO

Ruminants are born with an anatomically, microbiologically, and metabolically immature rumen. Optimizing the rearing of young ruminants represent an important challenge in intensive dairy farms. Therefore, the objective of this study was to evaluate the effects of dietary supplementation of young ruminants with a plant extract blend containing turmeric, thymol, and yeast cell wall components such as mannan oligosaccharides and ß-glucans. One hundred newborn female goat kids were randomly allocated to 2 experimental treatments, which were unsupplemented (CTL) or supplemented with the blend containing plant extracts and yeast cell wall components (PEY). All animas were fed with milk replacer, concentrate feed, and oat hay, and were weaned at 8 wk of age. Dietary treatments lasted from wk 1 to 22 and 10 animals from each treatment were randomly selected to monitor feed intake, digestibility, and health-related indicators. These latter animals were euthanized at wk 22 of age to study the rumen anatomical, papillary, and microbiological development, whereas the remaining animals were monitored for reproductive performance and milk yield during the first lactation. Results indicated that PEY supplementation did not lead to feed intake or health issues because PEY animals tended to have a higher concentrate intake and lower diarrheal incidence than CTL animals. No differences between treatments were noted in terms of feed digestibility, rumen microbial protein synthesis, health-related metabolites, or blood cell counts. Supplementation with PEY promoted a higher rumen empty weight, and rumen relative proportion to the total digestive tract weight, than CTL animals. This was accompanied with a higher rumen papillary development in terms of papillae length and surface area in the cranial ventral and caudal ventral sacs, respectively. The PEY animals also had higher expression of the MCT1 gene, which is related to volatile fatty acid absorption by the rumen epithelium, than CTL animals. The antimicrobial effects of the turmeric and thymol could explain the decreased the rumen absolute abundance of protozoa and anaerobic fungi. This antimicrobial modulation led to a change in the bacterial community structure, a decrease in the bacteria richness, and to the disappearance (i.e., Prevotellaceae_UCG-004, Bacteroidetes_BD2-2, Papillibacter, Schwartzia, and Absconditabacteriales_SR1) or decline of certain bacterial taxa (i.e., Prevotellaceae_NK3B31_group, and Clostridia_UCG-014). Supplementation with PEY also decreased the relative abundance of fibrolytic (i.e., Fibrobacter succinogenes and Eubacterium ruminantium) and increased amylolytic bacteria (Selenomonas ruminantium). Although these microbial changes were not accompanied with significant differences in the rumen fermentation, this supplementation led to increased body weight gain during the preweaning period, higher body weight during the postweaning period, and higher fertility rate during the first gestation. On the contrary, no residual effects of this nutritional intervention were noted on the milk yield and milk components during the first lactation. In conclusion, supplementation with this blend of plant extracts and yeast cell wall component in early life could be considered as a sustainable nutritional strategy to increase body weight gain and optimize the rumen anatomical and microbiological development in young ruminants, despite having minor productive implications later in life.


Assuntos
Saccharomyces cerevisiae , Timol , Feminino , Animais , Timol/farmacologia , Curcuma , Rúmen/metabolismo , Suplementos Nutricionais , Aumento de Peso , Parede Celular , Cabras/metabolismo
15.
J Dairy Sci ; 106(1): 219-232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36357205

RESUMO

The compound 3-nitrooxypropanol (3-NOP) is a promising methane inhibitor, which performs well in inhibiting methane emission and does not affect animal feed intake and digestibility. However, it causes a significant increase in hydrogen production while suppressing methane emission, resulting in a waste of feed energy. Vitamin B12 is a key factor in the propionate production pathway and thus plays an important role in regulating the hydrogen utilization pathway. In this study, the effects of 3-NOP combined with vitamin B12 supplementation on rumen fermentation and microbial compositional structure in dairy cattle were investigated by simulating rumen fermentation in vitro. Experiments were performed using a 2 × 2-factorial design: two 3-NOP levels (0 or 2 mg/g dry matter) and 2 vitamin B12 levels (0 or 2 mg/g dry matter). Three experiments were performed, each consisting of 4 treatments, 4 replicates, and 4 blanks containing only inoculum. The combined supplementation of 3-NOP and vitamin B12 reduced methane emission by 12% without affecting dry matter digestibility. The combined addition of 3-NOP and vitamin B12 significantly increased the concentration of propionate and reduced the concentration of acetate and the acetate to propionate ratio. At the bacterial level, 3-NOP increased the relative abundances of Christensenellaceae_R-7_group and Lachnospiraceae_NK3A20_group. Vitamin B12 increased the relative abundances of unclassified_f__Prevotellaceae and Prevotellaceae_UCG-003 and decreased the relative abundance of Lachnospiraceae_NK3A20_group. At the archaeal level, the combination of 3-NOP and vitamin B12 increased the relative abundances of Methanobrevibacter_ sp._ Abm4, OTU1125, and OTU95 and decreased the relative abundances of uncultured_methanogenic_archaeon_g__Methanobrevibacter, OTU1147, OTU1056, and OTU55. The results indicated that 3-NOP combined with vitamin B12 could alleviate rumen hydrogen emission and enhance the inhibition of methane emission compared with 3-NOP alone.


Assuntos
Metano , Propionatos , Feminino , Bovinos , Animais , Fermentação , Propionatos/metabolismo , Lactação , Vitamina B 12/farmacologia , Dieta/veterinária , Rúmen/metabolismo , Ração Animal/análise , Hidrogênio/metabolismo , Vitaminas/metabolismo
16.
J Dairy Sci ; 106(9): 6288-6298, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37474364

RESUMO

Recently, high-dimensional omics data are becoming available in larger quantities, and models have been developed that integrate them with genomics to understand in finer detail the relationship between genotype and phenotype, and thus improve the performance of genetic evaluations. Our objectives are to quantify the effect of the inclusion of microbiome data in the genetic evaluation for dairy traits in sheep, through the estimation of the heritability, microbiability, and how the microbiome effect on dairy traits decomposes into genetic and nongenetic parts. In this study we analyzed milk and rumen samples of 795 Lacaune dairy ewes. We included, as phenotype, dairy traits and milk fatty acids and proteins composition; as omics measurements, 16S rRNA rumen bacterial abundances; and as genotyping, 54K SNP chip for all ewes. Two nested genomic models were used: a first model to predict the individual contributions of the genetic and microbial abundances to phenotypes, and a second model to predict the additive genetic effect of the microbial community. In addition, microbiome-wide association studies for all dairy traits were applied using the 2,059 rumen bacterial abundances, and the genetic correlations between microbiome principal components and dairy traits were estimated. Results showed that in general the inclusion of both genetic and microbiome effect did not improve the fit of the model compared with the model with the genetic effect only. In addition, for all dairy traits the total heritability was equal to the direct heritability after fitting microbiota effects, due to a microbiability being almost zero for most dairy traits and heritability of the microbial community was very close to zero. Microbiome-wide association studies did not show operational taxonomic units with major effect for any of the dairy traits evaluated, and the genetic correlations between the first 5 principal components and dairy traits were low to moderate. So far, we can conclude that, using a substantial data set of 795 Lacaune dairy ewes, rumen bacterial abundances do not provide improved genetic evaluation for dairy traits in sheep.


Assuntos
Microbiota , Leite , Animais , Ovinos/genética , Feminino , Leite/metabolismo , RNA Ribossômico 16S/metabolismo , Fenótipo , Ácidos Graxos/metabolismo , Bactérias/genética
17.
J Dairy Sci ; 106(7): 4682-4697, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173253

RESUMO

Increasing the nitrogen-utilization efficiency (NUE) of dairy cows by breeding selection would offer advantages from nutritional, environmental, and economic perspectives. Because data collection of NUE phenotypes is not feasible in large cow cohorts, the cow individual milk urea concentration (MU) has been suggested as an indicator trait. Considering the symbiotic interplay between dairy cows and their rumen microbiome, individual MU was thought to be influenced by host genetics and by the rumen microbiome, the latter in turn being partly attributed to host genetics. To enhance our knowledge of MU as an indicator trait for NUE, we aimed to identify differential abundant rumen microbial genera between Holstein cows with divergent genomic breeding values for MU (GBVMU; GBVHMU vs. GBVLMU, where H and L indicate high and low MU phenotypes, respectively). The microbial genera identified were further investigated for their correlations with MU and 7 additional NUE-associated traits in urine, milk, and feces in 358 lactating Holsteins. Statistical analysis of microbial 16S rRNA amplicon sequencing data revealed significantly higher abundances of the ureolytic genus Succinivibrionaceae UCG-002 in GBVLMU cows, whereas GBVHMU animals hosted higher abundances of Clostridia unclassified and Desulfovibrio. The entire discriminating ruminal signature of 24 microbial taxa included a further 3 genera of the Lachnospiraceae family that revealed significant correlations to MU values and were therefore proposed as considerable players in the GBVMU-microbiome-MU axis. The significant correlations of Prevotellaceae UCG-003, Anaerovibrio, Blautia, and Butyrivibrio abundances with MU measurements, milk nitrogen, and N content in feces suggested their contribution to genetically determined N-utilization in Holstein cows. The microbial genera identified might be considered for future breeding programs to enhance NUE in dairy herds.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/química , Lactação/genética , Ureia/análise , RNA Ribossômico 16S/genética , Dieta/veterinária , Nitrogênio/análise , Genômica , Rúmen/química , Ração Animal/análise
18.
J Dairy Sci ; 106(3): 2054-2070, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710176

RESUMO

Early-life gut microbial colonization and development exert a profound impact on the health and metabolism of the host throughout the life span. The transmission of microbes from the mother to the offspring affects the succession and establishment of the early-life rumen microbiome in newborns, but the contributions of different maternal sites to the rumen microbial establishment remain unclear. In the present study, samples from different dam sites (namely, oral, rumen fluid, milk, and teat skin) and rumen fluid of yak calves were collected at 6 time points between d 7 and 180 postpartum to determine the contributions of the different maternal sites to the establishment of the bacterial and archaeal communities in the rumen during early life. Our analysis demonstrated that the dam's microbial communities clustered according to the sites, and the calves' rumen microbiota resembled that of the dam consistently regardless of fluctuations at d 7 and 14. The dam's rumen microbiota was the major source of the calves' rumen bacteria (7.9%) and archaea (49.7%) compared with the other sites, whereas the potential sources of the calf rumen microbiota from other sites varied according to the age. The contribution of dam's rumen bacteria increased with age from 0.36% at d 7 to 14.8% at d 180, whereas the contribution of the milk microbiota showed the opposite trend, with its contribution reduced from 2.7% at d 7 to 0.2% at d 180. Maternal oral archaea were the main sources of the calves' rumen archaea at d 14 (50.4%), but maternal rumen archaea became the main source gradually and reached 66.2% at d 180. These findings demonstrated the potential microbial transfer from the dam to the offspring that could influence the rumen microbiota colonization and establishment in yak calves raised under grazing regimens, providing the basis for future microbiota manipulation strategies during their early life.


Assuntos
Microbiota , Leite , Feminino , Animais , Bovinos , Rúmen/metabolismo , Bactérias , Archaea
19.
J Dairy Sci ; 106(3): 1815-1825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710185

RESUMO

The aim of the study was to determine the effect of a Bacillus-based direct-fed microbial on performance of mid-lactating Holstein dairy cows and on their milk fatty acid composition. Six multiparous cows fitted with a rumen cannula were used in a randomized replicated crossover design. Cows received 200 g/d of either whey powder as a control or BioPlus 2B (Chr. Hansen), a commercial direct-fed microbial providing Bacillus subtilis and Bacillus licheniformis, representing a daily dose of 6.4 × 1011 cfu, and using whey powder as a carrier. The 2 experimental periods lasted 14 d and were separated by a 7-d washout interval. Samples were collected on d 0, 13, and 14 of each period. Data from d 0 were used as covariate. Significance was declared at P ≤ 0.05 and tendency at 0.05


Assuntos
Bacillus licheniformis , Bacillus , Animais , Bovinos , Feminino , Ração Animal/análise , Bacillus subtilis , Dieta/veterinária , Ácidos Graxos/análise , Fermentação , Lactação , Leite/química , Pós/análise , Rúmen/metabolismo
20.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833936

RESUMO

Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.


Assuntos
Neoplasias Pulmonares , Microbiota , Ovinos , Animais , Estações do Ano , Rúmen/fisiologia , Tibet , Resposta ao Choque Frio , Neoplasias Pulmonares/metabolismo , Colina/metabolismo , Mediadores da Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA