RESUMO
Like Plasmodium vivax, both Plasmodium ovale curtisi and Plasmodium ovale wallikeri have the ability to cause relapse in humans, defined as recurring asexual parasitemia originating from liver-dormant forms subsequent to a primary infection. Here, we investigated relapse patterns in P ovale wallikeri infections from a cohort of travelers who were exposed to the parasite in sub-Saharan Africa and then experienced relapses after their return to France. Using a novel set of 8 highly polymorphic microsatellite markers, we genotyped 15 P ovale wallikeri relapses. For most relapses, the paired primary and relapse infections were highly genetically related (with 12 being homologous), an observation that was confirmed by whole-genome sequencing for the 4 relapses we further studied. This is, to our knowledge, the first genetic evidence of relapses in P ovale spp.
Assuntos
Malária , Plasmodium ovale , Humanos , Plasmodium ovale/genética , Malária/parasitologia , Plasmodium vivax/genética , Recidiva , Repetições de Microssatélites/genéticaRESUMO
Since 2010, the human-infecting malaria parasite Plasmodium ovale spp. has been divided into two genetically distinct species, P. ovale wallikeri and P. ovale curtisi. In recent years, application of whole-genome sequencing (WGS) to P. ovale spp. allowed to get a better understanding of its evolutionary history and discover some specific genetic patterns. Nevertheless, WGS data from P. ovale spp. are still scarce due to several drawbacks, including a high level of human DNA contamination in blood samples, infections with commonly low parasite density, and the lack of robust in vitro culture. Here, we developed two selective whole-genome amplification (sWGA) protocols that were tested on six P. ovale wallikeri and five P. ovale curtisi mono-infection clinical samples. Blood leukodepletion by a cellulose-based filtration was used as the gold standard for intraspecies comparative genomics with sWGA. We also demonstrated the importance of genomic DNA preincubation with the endonuclease McrBC to optimize P. ovale spp. sWGA. We obtained high-quality WGS data with more than 80% of the genome covered by ≥5 reads for each sample and identified more than 5,000 unique single-nucleotide polymorphisms (SNPs) per species. We also identified some amino acid changes in pocdhfr and powdhfr for which similar mutations in P. falciparum and P. vivax are associated with pyrimethamine or cycloguanil resistance. In conclusion, we developed two sWGA protocols for P. ovale spp. WGS that will help to design much-needed large-scale P. ovale spp. population studies. IMPORTANCE Plasmodium ovale spp. has the ability to cause relapse, defined as recurring asexual parasitemia originating from liver-dormant forms. Whole-genome sequencing (WGS) data are of importance to identify putative molecular markers associated with relapse or other virulence mechanisms. Due to low parasitemia encountered in P. ovale spp. infections and no in vitro culture available, WGS of P. ovale spp. is challenging. Blood leukodepletion by filtration has been used, but no technique exists yet to increase the quantity of parasite DNA over human DNA when starting from genomic DNA extracted from whole blood. Here, we demonstrated that selective whole-genome amplification (sWGA) is an easy-to-use protocol to obtain high-quality WGS data for both P. ovale spp. species from unprocessed blood samples. The new method will facilitate P. ovale spp. population genomic studies.
Assuntos
Malária , Plasmodium ovale , Humanos , Plasmodium ovale/genética , Parasitemia/parasitologia , Pirimetamina , Malária/epidemiologia , Recidiva , Aminoácidos , EndonucleasesRESUMO
The glycosylated mucin domain of the Toxoplasma gondii cyst wall glycoprotein CST1 is heavily stained by Dolichos biflorus agglutinin, a lectin that binds to N-acetylgalactosamine. The cyst wall is also heavily stained by the chitin binding lectin succinylated wheat germ agglutinin (s-WGA), which selectively binds to N-acetylglucosamine-decorated structures. Here, we tracked the localization of N-acetylglucosamine-decorated structures that bind to s-WGA in immature and mature in vitro cysts. s-WGA localization was observed at the cyst periphery 6 h after the differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 and at all later times after differentiation, s-WGA was localized in a continuous staining pattern at the cyst wall. Coinciding with the maturation of the cyst matrix by day 3 of cyst development, s-WGA also localized in a continuous matrix pattern inside the cyst. s-WGA localized in both the outer and inner layer regions of the cyst wall and in a continuous matrix pattern inside mature 7- and 10-day-old cysts. In addition, s-WGA colocalized in the cyst wall with CST1, suggesting that N-acetylglucosamine- and N-acetylgalactosamine-decorated molecules colocalized in the cyst wall. In contrast to CST1, GRA4, and GRA6, the relative accumulation of the molecules that bind s-WGA in the cyst wall was not dependent on the expression of GRA2. Our results suggest that GRA2-dependent and GRA2-independent mechanisms regulate the trafficking and accumulation of glycosylated molecules that colocalize in the cyst wall.IMPORTANCE Chronic Toxoplasma gondii infection is maintained in the central nervous system by thick-walled cysts. If host immunity wanes, cysts recrudesce and cause severe and often lethal toxoplasmic encephalitis. Currently, there are no therapies to eliminate cysts, and little biological information is available regarding cyst structure(s). Here, we investigated cyst wall molecules recognized by succinylated wheat germ agglutinin (s-WGA), a lectin that specifically binds to N-acetylglucosamine-decorated structures. N-Acetylglucosamine regulates cell signaling and plays structural roles at the cell surface in many organisms. The cyst wall and cyst matrix were heavily stained by s-WGA in mature cysts and were differentially stained during cyst development. The relative accumulation of molecules that bind to s-WGA in the cyst wall was not dependent on the expression of GRA2. Our findings suggest that glycosylated cyst wall molecules gain access to the cyst wall via GRA2-dependent and GRA2-independent mechanisms and colocalize in the cyst wall.
Assuntos
Parede Celular/química , Proteínas de Protozoários/química , Toxoplasma/química , Aglutininas do Germe de Trigo/química , Células Cultivadas , Fibroblastos/parasitologia , Glicosilação , Interações Hospedeiro-Patógeno , HumanosRESUMO
INTRODUCTION: Artemether-Lumefantrine (A-L) remains the drug of choice for the treatment of uncomplicated malaria in Ghana. However, the pharmaco-activity of A-L has not been assessed on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes. Therefore, this study sought to determine the therapeutic efficacy of A-L on P. falciparum parasites isolated from Ghana. METHODS: The clinical study was done in Ga West Municipality, Ghana, where 78 uncomplicated malaria patients were recruited with prior consent. The patients were treated orally with A-L according to national treatment guidelines. Baseline parasitaemia was determined before treatment and 8-hourly parasitaemia posttreatment were determined till initial clearance of parasitaemia and at days 7, 14, 21, and 28. Kelch 13 and Pfmdr1 genes were genotyped by sequencing using baseline samples. Parasite clearance characteristics were determined using Parasite Clearance Estimator beta 0.9 application. RESULTS: Five Kelch 13 (F446I, S466N, R539I, A578S, and A676S) and three Pfmdr1 mutations (N86Y, Y184F and D1246Y) were identified in 78 infected samples. About 8% of the samples contained two Pfmdr1 double mutations (N86Y & D1246Y and Y184F & N86Y). Additionally, three samples (3.8%) were found to contain both Kelch 13 mutations and Pfmdr1 wild type genes. In all patients, parasitaemia persisted within the first 24 h of A-L therapy. However, at hour 40, only two patients were parasitaemic while all patients were aparasitaemic at hour 48. The genotypic profiles of the two persistent parasites at hour 40 were F446I and D1246Y, and R539I, Y184F, and N86Y. The slope half-life of the former was 6.4 h while the latter was 6.9 h and their respective PCT99 were 47.9 h and 49.2 h as well as a clearance rate constants of 0.109 and 0.092 respectively. CONCLUSION: This study reports the effectiveness of A-L on various P. falciparum mutant alleles. However, continuous surveillance of Kelch 13 mutations and Pfmdr1 gene in Ghana and regular assessment of the therapeutic efficacy of A-L and other artemisinin derivatives is recommended.