Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Arch Microbiol ; 204(10): 623, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107270

RESUMO

A Gram-negative, aerobic, non-motile, and rod-shaped bacterial strain, designated BSSL-BM10T, was isolated from sand of a dune that was collected from the Yellow Sea, Republic of Korea. It was subjected to a polyphasic taxonomic study. 16S rRNA gene sequence analysis showed that strain BSSL-BM10T fell phylogenetically within the radiation comprising type strains of Devosia species. The 16S rRNA gene sequence of strain BSSL-BM10T shared sequence similarities of 98.2% with the type strain of D. naphthalenivorans and 93.5-97.7% with type strains of other Devosia species. ANI and dDDH values between strain BSSL-BM10T and type strains of 18 Devosia species were 71.0-78.4% and 18.8-21.5%, respectively. The DNA G + C content of strain BSSL-BM10T was 60.9% based on its genomic sequence data. Strain BSSL-BM10T contained Q-10 as the predominant ubiquinone and 11-methyl C18:1 ω7c, C18:1 ω7c, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), and C16:0 as its major fatty acids. Major polar lipids of strain BSSL-BM10T were phosphatidylglycerol and two unidentified glycolipids. Strain BSSL-BM10T showed distinguishable phenotypic properties with its phylogenetic and genetic distinctiveness separated from recognized Devosia species. Based on data presented in this study, strain BSSL-BM10T should be placed in the genus Devosia. The name Devosia litorisediminis sp. nov. is proposed for strain BSSL-BM10T (= KACC 21633T = NBRC 115152T).


Assuntos
Areia , Ubiquinona , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Glicolipídeos , Fosfatidilgliceróis , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Antonie Van Leeuwenhoek ; 114(10): 1585-1593, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34292424

RESUMO

An aerobic, Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, and light pink-colored bacterial strain, designated TS19T, was isolated from a sand sample obtained from a coastal sand dune after exposure to 3 kGy of gamma radiation. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the isolate was a member of the genus Hymenobacter and was most closely related to H. wooponensis WM78T (98.3% similarity). Strain TS19T and H. wooponensis showed resistance to gamma radiation with D10 values (i.e., the dose required to reduce the bacterial population by tenfold) of 7.3 kGy and 3.5 kGy, respectively. The genome of strain TS19T consists of one contig with 4,879,662 bp and has a G + C content of 56.2%. The genome contains 3,955 protein coding sequences, 44 tRNAs, and 12 rRNAs. The predominant fatty acids of strain TS19T were iso-C15:0, summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and C16:1 ω5c. The major polar lipids were phosphatidylethanolamine, and one unidentified aminophospholipid. The main respiratory quinone was menaquinone-7. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain TS19T represents a novel species, for which the name Hymenobacter taeanensis sp. nov. is proposed. The type strain is TS19T (= KCTC 72897T = JCM 34023T).


Assuntos
Cytophagaceae , Areia , Técnicas de Tipagem Bacteriana , Cytophagaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2
3.
Antonie Van Leeuwenhoek ; 114(2): 151-159, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33449223

RESUMO

An aerobic, Gram-negative, non-motile, non-spore-forming, rod-shaped, and pale yellow-colored bacterial strain, designated TS118T, was isolated from a sand sample obtained from a coastal sand dune after exposure to 3 kGy of gamma radiation. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the genus Spirosoma and most closely related to Spirosoma metallicum PR1014kT (95.1% similarity). The genome of strain TS118T is constituted by one chromosome (5,691,492 bp) and one plasmid (28,440 bp) and has a G + C content of 52.7%. The genome contains 4641 protein coding sequences (CDSs), 38 tRNAs, and 11 rRNAs. The predominant fatty acids of strain TS118T were C16:1 ω5c, iso-C15:0, C16:0, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and iso-C17:0 3-OH. The major polar lipids were phosphatidylethanolamine, an unidentified amino lipid and an unidentified aminophospholipid. The main respiratory quinone was menaquinone-7 (MK-7). The novel strain showed resistance to gamma radiation with a D10 value (i.e., the dose required to reduce the bacterial population by tenfold) of 4.3 kGy. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain TS118T represents a novel species, for which the name Spirosoma taeanense sp. nov. is proposed. The type strain is TS118T (=KCTC 72898T =JCM 34024T).


Assuntos
Areia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2
4.
Mycorrhiza ; 31(4): 497-510, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34196799

RESUMO

Ectomycorrhizal symbiosis appears extensively in the Northern Hemisphere, where Mediterranean ecosystems constitute an important ecological area of considerable biodiversity value. Littoral sand dunes are among high-risk habitats, and ectomycorrhizal lifestyle contributes significantly to supporting life in such regions. Mallocybe heimii (Bon) Matheny & Esteve-Rav. (Inocybaceae, Basidiomycota) and the very similar M. arenaria (Bon) Matheny & Esteve-Rav. grow in poor, usually sandy soils, in association with angiosperms or gymnosperms. Basidiomata originally identified under these names were collected from littoral sand dunes of Greece, and their morpho-anatomical characteristics were examined in conjunction with material derived from other European regions. Sequences from basidiomata and root tips corresponding to the nuclear rDNA internal transcribed spacer region (ITS) and large subunit (LSU) were obtained and analyzed. Phylogenetic results demonstrated that material identified as M. heimii or M. arenaria form a single well-supported group, while M. agardhii (N. Lund) Matheny & Esteve-Rav. is confirmed to be distinct from M. arenaria (the latter was initially described as a variety of the former, i.e., I. agardhii var. arenaria Bon). A detailed tree of the genus Mallocybe was generated on the basis of concatenated ITS and LSU sequences, and relationships of selected taxa are discussed in the light of morphological and sequence data. In addition, the first morphotype descriptions of M. heimii ectomycorrhizae with Cistus creticus L. and Pinus halepensis Miller are hereby provided. Both morphotypes exhibited the typical characteristics of Inocybe/Mallocybe ectomycorrhizae; however, differences were noted, the most significant being the presence of clamps on mantle hyphae and the type of anastomoses.


Assuntos
Cistus , Micorrizas , Pinus , Ecossistema , Micorrizas/genética , Filogenia , Areia
5.
New Phytol ; 226(6): 1836-1849, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017117

RESUMO

Primary succession models focus on aboveground vascular plants. However, the prevalence of mosses and lichens, that is cryptogams, suggests they play a role in soil successions. Here, we explore whether effects of cryptogams on belowground microbes can facilitate progressive shifts in sand dune succession. We linked aboveground vegetation, belowground bacterial and fungal communities, and soil chemical properties in six successional stages in Arctic inland sand dunes: bare sand, grass, moss, lichen, ericoid heath and mountain birch forest. Compared with the bare sand and grass stages, microbial biomass and the proportion of fungi increased in the moss stage, and later stage microbial groups appeared despite the absence of their host plants. Microbial communities of the lichen stage resembled the communities in the vascular plant stages. Bacterial communities correlated better with soil chemical variables than with vegetation and vice versa for fungal communities. The correlation of fungi with vegetation increased with vascular vegetation. Distinct bacterial and fungal patterns of biomass, richness and plant-microbe interactions showed that the aboveground vegetation change structured the bacterial and fungal community differently. The asynchrony of aboveground vs belowground changes suggests that cryptogams can drive succession towards vascular plant dominance through microbially mediated facilitation in eroded Arctic soil.


Assuntos
Areia , Microbiologia do Solo , Regiões Árticas , Bactérias , Ecossistema , Fungos , Solo
6.
Genetica ; 148(3-4): 149-164, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32451787

RESUMO

Understanding the processes and patterns of local adaptation and migration involves an exhaustive knowledge of how landscape features and population distances shape the genetic variation at the geographical level. Ctenomys australis is an endangered subterranean rodent characterized by having a restricted geographic range immerse in a highly fragmented sand dune landscape in the Southeast of Buenos Aires province, Argentina. We use 13 microsatellite loci in a total of 194 individuals from 13 sampling sites to assess the dispersal patterns and population structure in the complete geographic range of this endemic species. Our analyses show that populations are highly structured with low rates of gene flow among them. Genetic differentiation among sampling sites was consistent with an isolation by distance pattern, however, an important fraction of the population differentiation was explained by natural barriers such as rivers and streams. Although the individuals were sampled at locations distanced from each other, we also use some landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. These analyses showed that the sand dune habitat availability (the most suitable habitat for the occupation of the species), was one of the main factors that explained the differentiation patterns of the different sampling sites located on both sides of the Quequén Salado River. Finally, habitat availability was directly associated with the width of the sand dune landscape in the Southeast of Buenos Aires province, finding the greatest genetic differentiation among the populations of the Northeast, where this landscape is narrower.


Assuntos
Espécies em Perigo de Extinção , Especiação Genética , Polimorfismo Genético , Roedores/genética , Distribuição Animal , Animais , Repetições de Microssatélites
7.
Int J Syst Evol Microbiol ; 70(12): 6323-6330, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33119482

RESUMO

A Gram-stain-negative, non-pigmented, non-spore-forming, motile, strictly aerobic bacterial strain, designated CAU 1492T, was isolated from a coastal sand dune and its taxonomic position was examined using a polyphasic approach. Cells of strain CAU 1492T grew optimally at 30 °C, pH 7.0 and in 3 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence of CAU 1492T showed that it formed a distinct lineage within the family Rhodobacteraceae as a separate deep branch, with 96.8 % or lower sequence similarity values to representatives of the genera Marivita, Donghicola, Sulfitobacter, Marinovum, Phaeobacter, Primorskyibacter, Roseovarius and Aestuariihabitans. Strain CAU 1492T was closely related to Marivita geojedonensis DPG-138T (96.8 %), Donghicola eburneus SW-277T (96.7 %), Sulfitobacter porphyrae SCM-1T (96.7 %), Marinovum algicola FF3T (96.6 %) and Aestuariihabitans beolgyonensis BB-MW15T (96.4 %) based on 16S rRNA gene sequences. The major cellular fatty acids of strain CAU 1492T were cyclo-C19 : 0 ω8c and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The polar lipid pattern was composed of phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid and an unidentified aminolipid. The strain contained Q-10 as the sole respiratory quinone. The draft genome of strain CAU 1492T was 4.63 Mb with a DNA G+C content of 63.1 mol%. The genome includes 4292 protein-coding genes and a five rRNA operons. On the basis of the phenotypic, chemotaxonomic and genomic data, strain CAU 1492T represents a novel genus in the family Rhodobacteraceae for which the name Arenibacterium halophilum gen. nov., sp. nov. is proposed. The type strain of Arenibacterium halophilum is CAU 1492T (=KCTC 62998T=NBRC 113696T).


Assuntos
Filogenia , Rhodobacteraceae/classificação , Areia/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie
8.
Mycorrhiza ; 30(4): 475-489, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32519068

RESUMO

Cultivation of olive trees covers large coastal areas of land in Mediterranean regions, many of them characterized by low soil fertility and exposed to salinity and seasonal drought. In this frame, we developed mixed community inocula of arbuscular mycorrhizal fungi (AMF) derived from the extreme, seasonally arid environments of six Mediterranean sand dunes and evaluated their effects, in the form of community inocula, on rooted semi-woody olive tree cuttings (Olea europaea cv. Koroneiki). The plantlets were grown in the greenhouse for 10 months under 50 mM and 100 mM concentrations of NaCl, successively applied to induce osmotic stress. Inoculation had a positive effect on plant growth and nutrient uptake. However, the three best-performing inocula in early colonization and in plant growth enhancement also resulted in high plant sensitivity to high salinity, which was not observed for the other three inocula. This was expressed by decreased nutrient uptake and drastically lower plant growth, plant photosynthesis, and stomatal conductance (generally an over 50% reduction compared to no salinity application). Amplicon sequencing analysis of the olive plants under salinity stress showed that the AMF communities in the roots were clearly differentiated by inoculation treatment. We could not, however, consistently associate the plant responses observed under high salinity with specific shared AMF community membership or assembly attributes. The observed physiological overreaction to osmotic stress may be an adaptation trait, potentially brought about by host selection coupled to abiotic environmental filtering, in the harsh conditions from which the AMF inocula were derived. The overreaction may, however, be undesirable if conveyed to allochthonous plants at an agronomic level.


Assuntos
Micorrizas , Olea , Raízes de Plantas , Salinidade , Estresse Salino , Areia
9.
Artigo em Inglês | MEDLINE | ID: mdl-33616514

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterial strain, designated BSSL-BM3T, was isolated from sand collected from a dune near the Yellow Sea, Republic of Korea, and subjected to a polyphasic taxonomic study. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain BSSL-BM3T fell within the clade comprising the type strains of Arenibacter species. Strain BSSL-BM3T exhibited 16S rRNA gene sequence similarity values of 98.0-99.0 % to the type strains of Arenibacter catalasegens, Arenibacter hampyeongensis, Arenibacter echinorum, Arenibacter palladensis and Arenibacter troitsensis and of 94.2-96.7 % to the type strains of the other Arenibacter species. The averagenucleotide identity and digitalDNA-DNA hybridization values between strain BSSL-BM3T and the type strains of A. catalasegens, A. hampyeongensis, A. echinorum, A. palladensis and A. troitsensis were 82.2-88.8 % and 25.0-36.5 %, respectively. The DNA G+C content of strain BSSL-BM3T from genomic sequence data was 38.75 mol%. Strain BSSL-BM3T contained MK-6 as the predominant menaquinone and iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 1 G as the major fatty acids. The major polar lipids of strain BSSL-BM3T were phosphatidylethanolamine and two unidentified lipids. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain BSSL-BM3T is separated from recognized Arenibacter species. On the basis of the data presented here, strain BSSL-BM3T is considered to represent a novel species of the genus Arenibacter, for which the name Arenibacter arenosicollis sp. nov. is proposed. The type strain is BSSL-BM3T (=KACC 21632T=NBRC 114502T).

10.
Microb Ecol ; 77(1): 217-229, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29926147

RESUMO

Early successional biological soil crusts (BSCs), a consortium of bacteria, cyanobacteria, and other microalgae, are one of the first settlement stages on temperate coastal sand dunes. In this study, we investigated the algal biomass (Chlorophyll a (Chl a)), algal (Calgal) and microbial carbon (Cmic), elemental stoichiometry (C:N:P), and acid and alkaline phosphatase activity (AcidPA and AlkPA) of two algae-dominated BSCs from a coastal white dune (northeast Germany, on the southwestern Baltic Sea) which differed in the exposure to wind forces. The dune sediment (DS) was generally low in total carbon (TC), nitrogen (TN), and phosphorus (TP). These elements, together with the soil organic matter (SOM) accumulated in the BSC layer and in the sediment underneath (crust sediment CS), leading to initial soil development. The more disturbed BSC (BSC1) exhibited lower algal and microbial biomass and lower Calgal/Cmic ratios than the undisturbed BSC (BSC2). The BSC1 accumulated more organic carbon (OC) than BSC2. However, the OC in the BSC2 was more effectively incorporated into Cmic than in the BSC1, as indicated by lower OC:Cmic ratios. The AcidPA (1.1-1.3 µmol g-1 DM h-1 or 147-178 µg g-1 DM h-1) and AlkPA (2.7-5.5 µmol g-1 DM h-1 or 372-764 µg g-1 DM h-1) were low in both BSCs. The PA, together with the elemental stoichiometry, indicated no P limitation of both BSCs but rather water limitation followed by N limitation for the algae community and a carbon limitation for the microbial community. Our results explain the observed distribution of early successional and more developed BSCs on the sand dune.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Silício/análise , Microbiologia do Solo , Solo/química , Países Bálticos , Biomassa , Carbono , Clorofila A , Sedimentos Geológicos/química , Alemanha , Microbiota , Nitrogênio , Fósforo , Estações do Ano , Água
11.
Ecol Lett ; 21(12): 1845-1852, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276980

RESUMO

The impact of species loss from competitive communities partly depends on how populations of the surviving species respond. Predicting the response should be straightforward using models that describe population growth as a function of competitor densities; but these models require accurate estimates of interaction strengths. Here, we quantified how well we could predict responses to competitor removal in a community of annual plants, using a combination of observation and experiment. It was straightforward to fit models to multi-species communities, which passed standard diagnostic tests and provided apparently sensible estimates of interaction strengths. However, the models consistently underpredicted the response to competitor removal, by a factor of at least 50%. We argue that this poor predictive ability is likely to be general in plant communities due to 'the ghost of competition present' that confines species to parts of the environment in which they compete best.


Assuntos
Ecossistema , Plantas , Modelos Biológicos , Dinâmica Populacional
12.
Planta ; 247(3): 773-777, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29404681

RESUMO

MAIN CONCLUSION: Different levels of salt stress affected the OAS-TL expression levels in Pancratium maritimum organs (bulb, leaf and root). A detailed method has been described for the identification of the conserved domain of the OAS-TL cDNA in sea daffodil given the scarce data available for the Amaryllidaceae family. Pancratium maritimum or sea daffodil (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated the involvement of cysteine synthesis for salt tolerance through the expression of the enzyme O-acetylserine(thio)lyase (OAS-TL) during the stress response to NaCl treatments in P. maritimum. Quantitative real-time PCR was used in different organs (bulb, leaf and root).


Assuntos
Amaryllidaceae/metabolismo , Cisteína Sintase/biossíntese , Tolerância ao Sal/genética , Amaryllidaceae/enzimologia , Amaryllidaceae/genética , Amaryllidaceae/fisiologia , Cisteína Sintase/metabolismo , Cisteína Sintase/fisiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Proc Biol Sci ; 284(1846)2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077773

RESUMO

Functional diversity loss among pollinators has rapidly progressed across the globe and is expected to influence plant-pollinator interactions in natural communities. Although recent findings suggest that the disappearance of a certain pollinator functional group may cause niche expansions and/or shifts in other groups, no study has examined this prediction in natural communities with high plant and pollinator diversities. By comparing coastal pollination networks on continental and oceanic islands, we examined how community-level flower visit patterns are influenced by the relative biomass of long-tongued pollinators (RBLP). We found that RBLP significantly correlated with pollinator functional diversity and was lower in oceanic than in continental islands. Pollinator niches shifted with decreasing RBLP, such that diverse species with various proboscis lengths, especially short-tongued species, increasingly visited long-tubed flowers. However, we found no conspicuous negative impacts of low RBLP and the consequent niche shifts on pollinator visit frequencies to flowers in oceanic island communities. Notably, fruit set significantly decreased as RBLP decreased in a study plant species. These results suggest that niche shifts by other functional groups can generally compensate for a decline in long-tongued pollinators in natural communities, but there may be negative impacts on plant reproduction.


Assuntos
Abelhas , Biodiversidade , Borboletas , Ilhas , Polinização , Animais , Ecossistema , Flores , Plantas
14.
Indian J Microbiol ; 56(1): 35-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26843695

RESUMO

A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca(2+) and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.

15.
Glob Chang Biol ; 21(10): 3738-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26059656

RESUMO

Climate change is expected to have an impact on plant communities as increased temperatures are expected to drive individual species' distributions polewards. The results of a revisitation study after c. 34 years of 89 coastal sites in Scotland, UK, were examined to assess the degree of shifts in species composition that could be accounted for by climate change. There was little evidence for either species retreat northwards or for plots to become more dominated by species with a more southern distribution. At a few sites where significant change occurred, the changes were accounted for by the invasion, or in one instance the removal, of woody species. Also, the vegetation types that showed the most sensitivity to change were all early successional types and changes were primarily the result of succession rather than climate-driven changes. Dune vegetation appears resistant to climate change impacts on the vegetation, either as the vegetation is inherently resistant to change, management prevents increased dominance of more southerly species or because of dispersal limitation to geographically isolated sites.


Assuntos
Biodiversidade , Mudança Climática , Plantas , Ecossistema , Escócia
16.
Ann Bot ; 114(2): 279-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24918206

RESUMO

BACKGROUND AND AIMS: Simultaneous formation of aerial and soil seed banks by a species provides a mechanism for population maintenance in unpredictable environments. Eolian activity greatly affects growth and regeneration of plants in a sand dune system, but we know little about the difference in the contributions of these two seed banks to population dynamics in sand dunes. METHODS: Seed release, germination, seedling emergence and survival of a desert annual, Agriophyllum squarrosum (Chenopodiaceae), inhabiting the Ordos Sandland in China, were determined in order to explore the different functions of the aerial and soil seed banks. KEY RESULTS: The size of the aerial seed bank was higher than that of the soil seed bank throughout the growing season. Seed release was positively related to wind velocity. Compared with the soil seed bank, seed germination from the aerial seed bank was lower at low temperature (5/15 °C night/day) but higher in the light. Seedling emergence from the soil seed bank was earlier than that from the aerial seed bank. Early-emerged (15 April-15 May) seedlings died due to frost, but seedlings that emerged during the following months survived to reproduce successfully. CONCLUSIONS: The timing of seed release and different germination behaviour resulted in a temporal heterogeneity of seedling emergence and establishment between the two seed banks. The study suggests that a bet-hedging strategy for the two seed banks enables A. squarrosum populations to cope successfully with the unpredictable desert environment.


Assuntos
Chenopodiaceae/crescimento & desenvolvimento , Ecossistema , Sementes/crescimento & desenvolvimento , Solo , Bancos de Tecidos , Análise de Variância , China , Germinação/fisiologia , Chuva , Estações do Ano , Plântula/crescimento & desenvolvimento , Especificidade da Espécie , Temperatura
17.
R Soc Open Sci ; 10(3): 221652, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36968240

RESUMO

The way species use their habitat dictates their intra- and interspecific interactions. We studied the effects of the microhabitat type and slope on the movement behaviour of the Saharan horned viper (Cerastes cerastes) in its natural habitat. This viper occurs in sand dunes and moves mostly by sidewinding. Additionally, we studied the microhabitat preference of desert rodents-the vipers' main prey. We placed the vipers on different natural dune slopes and recorded their behaviour. We found a strong anti-gravitactic response: vipers moved more frequently towards the top of the dune than in any other direction, despite a decrease in stride length with increasing slope. The foraging-related behaviour of the vipers was concentrated in the dune semi-stable areas rather than its stable or shifting sand areas. We measured rodent activity by placing seed trays in the dune allowing the rodents to collect seeds. Rodent activity was the highest in the shifting sands, closely followed by the semi-stable microhabitat. These results suggest the vipers use the semi-stable microhabitat mainly for foraging and may use the shifting sand areas as commuting routes between such areas. This study may be of use for conservation efforts of psammophilic species in desert dunes.

18.
MycoKeys ; 100: 153-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074623

RESUMO

Steppe vegetation on sandy soil in Hungary has recently been revealed as one of the hot spots in Europe for the stalked puffballs (genus Tulostoma). In the framework of the taxonomic revision of gasteroid fungi in Hungary, four Tulostoma species are described here as new to science: T.dunense, T.hungaricum, T.sacchariolens and T.shaihuludii. The study is based on detailed macro- and micromorphological investigations (including light and scanning electron microscopy), as well as a three-locus phylogeny of nrDNA ITS, nrDNA LSU and tef1-α sequences. The ITS and LSU sequences generated from the type specimen of T.cretaceum are provided and this resolved partly the taxonomy of the difficult species complex of T.aff.cretaceum.

19.
Front Microbiol ; 14: 1279151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169811

RESUMO

Terrestrial diatoms are widespread in a large variety of habitats and are regularly recorded in biocrusts. Although diatoms have long been known to live in terrestrial habitats, only a few studies have focused on their diversity of ecophysiology. Here we present a study on the ecophysiological performance of five terrestrial diatom cultures from biocrusts, which were collected in sand dunes of the German coast of the Baltic Sea. The sampling sites were selected along a gradient of human impacts on the dunes. The richness of diatom species, roughly estimated from permanent slides, was around 30 species per sampling site. The species abundance was calculated in the same way revealing a high proportion of broken diatom frustules. All diatom cultures established in the laboratory showed no photoinhibition and high oxygen production along a light gradient. The desiccation tolerance differed among the strains, with high recovery observed for Hantzschia abundans and Achnanthes coarctata and low to no recovery for Pinnularia borealis and Pinnularia intermedia. The maximum growth rate for most strains was between 25 and 30°C. These temperatures can be easily reached in their natural environments. Nevertheless, during short-term exposure to elevated temperatures, oxygen production was recorded up to 35°C. Interestingly, two of five diatom cultures (Hantzschia abundans and Pinnularia borealis) produced mycosporine-like amino acids. These UV-protective substances are known from marine diatoms but not previously reported in terrestrial diatoms.

20.
Biology (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625422

RESUMO

Soil salinity and mineral deficiency are major problems in agriculture. Many studies have reported that plant-associated microbiota, particularly rhizosphere and root microbiota, play a crucial role in tolerance against salinity and mineral deficiency. Nevertheless, there are still many unknown parts of plant-microbe interaction, especially regarding their role in halophyte adaptation to coastal ecosystems. Here, we report the bacterial community associated with the roots of coastal sand dune halophytes Spinifex littoreus and Calotropis gigantea, and the soil properties that affect their composition. Strong correlations were observed between root bacterial diversity and soil mineral composition, especially with soil Calcium (Ca), Titanium (Ti), Cuprum (Cu), and Zinc (Zn) content. Soil Ti and Zn content showed a positive correlation with bacterial diversity, while soil Ca and Cu had a negative effect on bacterial diversity. A strong correlation was also found between the abundance of several bacterial species with soil salinity and mineral content, suggesting that some bacteria are responsive to changes in soil salinity and mineral content. Some of the identified bacteria, such as Bacillus idriensis and Kibdelosporangium aridum, are known to have growth-promoting effects on plants. Together, the findings of this work provided valuable information regarding bacterial communities associated with the roots of sand dune halophytes and their interactions with soil properties. Furthermore, we also identified several bacterial species that might be involved in tolerance against stresses. Further work will be focused on isolation and transplantation of these potential microbes, to validate their role in plant tolerance against stresses, not only in their native hosts but also in crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA