Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(6): 130-138, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34046997

RESUMO

PURPOSE: We analyzed interfractional robustness of scanning carbon ion radiotherapy (CIRT) for prostate cancer based on the dose distribution using daily in-room computed tomography (CT) images. MATERIALS AND METHODS: We analyzed 11 consecutive patients treated with scanning CIRT for localized prostate cancer in our hospital between December 2015 and January 2016. In-room CT images were taken under treatment conditions in every treatment session. The dose distribution on each in-room CT image was recalculated, while retaining the pencil beam arrangement of the initial treatment plan. Then, the dose-volume histogram (DVH) parameters including the percentage of the clinical target volume (CTV) with 95% and 90% of the prescribed dose area (V95% of CTV, V90% of CTV) and V80% of rectum were calculated. The acceptance criteria for the CTV and rectum were set at V95% of CTV ≥95%, V90% of CTV ≥98%, and V80% of rectum < 10 ml. RESULTS: V95% of CTV, V90% of CTV, and V80% of rectum for the reproduced plans were 98.8 ± 3.49%, 99.5 ± 2.15%, and 4.39 ± 3.96 ml, respectively. Acceptance of V95% of CTV, V90% of CTV, and V80% of rectum was obtained in 123 (94%), 125 (95%) and 117 sessions (89%), respectively. Acceptance of the mean dose of V95% of CTV, V90% of CTV, and V80% of rectum for each patient was obtained in 10 (91%), 10 (91%), and 11 patients (100%), respectively. CONCLUSIONS: We demonstrated acceptable interfractional robustness based on the dose distribution in scanning CIRT for prostate cancer.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reto/diagnóstico por imagem , Tomografia Computadorizada por Raios X
2.
Med Phys ; 49(1): 702-713, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34796522

RESUMO

PURPOSE: In the scanning beam delivery of protons, different portions of the target are irradiated with different linear energy transfer protons with various time intervals and irradiation times. This research aimed to evaluate the spatially dependent biological effectiveness of protracted irradiation in scanning proton therapy. METHODS: One and two parallel opposed fields plans were created in water phantom with the prescribed dose of 2 Gy. Three scenarios (instantaneous, continuous, and layered scans) were used with the corresponding beam delivery models. The biological dose (physical dose × relative biological effectiveness) was calculated using the linear quadratic model and the theory of dual radiation action to quantitatively evaluate the dose delivery time effect. In addition, simulations using clinical plans (postoperative seminoma and prostate tumor cases) were conducted to assess the impact of the effects on the dose volume histogram parameters and homogeneity coefficient (HC) in targets. RESULTS: In a single-field plan of water phantom, when the treatment time was 19 min, the layered-scan scenario showed a decrease of <0.2% (almost 3.3%) in the biological dose from the plan on the distal (proximal) side because of the high (low) dose rate. This is in contrast to the continuous scenario, where the biological dose was almost uniformly decreased over the target by approximately 3.3%. The simulation with clinical geometry showed that the decrease rates in D99% were 0.9% and 1.5% for every 10 min of treatment time prolongation for postoperative seminoma and prostate tumor cases, respectively, whereas the increase rates in HC were 0.7% and 0.2%. CONCLUSIONS: In protracted irradiation in scanning proton therapy, the spatially dependent dose delivery time structure in scanning beam delivery can be an important factor for accurate evaluation of biological effectiveness.


Assuntos
Terapia com Prótons , Humanos , Transferência Linear de Energia , Masculino , Imagens de Fantasmas , Prótons , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA