Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 24(1): 879, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951876

RESUMO

BACKGROUND: Which types of Modic changes (MCs) and whether or how specific factors associated to MCs work on lumbar instability have yet to be well understood. The purpose of this study was to investigate the influences of the types of MCs, the extent of MCs lesion involvement, and different lumbar levels involved by MCs on lumbar instability. METHODS: This retrospective study included 263 adult subjects with MCs who underwent lumbar X-ray examinations in the neutral, flexion, and extension positions. All patients who met our inclusion criteria were examined with 1.5 Tesla magnetic resonance units. Two experienced authors with more than three-year clinical experience independently evaluated and measured the subjects' radiographic images. The subgroup analysis was performed to detect the differences in subjects' baseline characteristics and lumbar segmental motions among three types of MCs, the extent of MCs lesion involvement and different lumbar levels involved by MCs. RESULTS: There was a statistical difference in body mass index (BMI) between different involvement extent of MCs (p < 0.01), indicating that the subjects with high BMI are more likely to develop severe MCs. The subjects with Modic type 1 change (MC1) had a significant increase in lumbar angular motion than those with Modic type 2 change (MC2) and Modic type 3 change (MC3) (p < 0.01) and compared with MC3, a significant increase in lumbar translation motion was detected in subjects with MC1 and MC2 (p < 0.01). While, angular motion decreased, translation motion increased significantly as the extent of MCs lesion involvement aggravated (p < 0.01). However, there were no statistical differences in lumbar angular and translation motions between different lumbar levels involved by MCs (p > 0.05). CONCLUSIONS: Higher BMI might be a risk factor for the development of severe MCs. MC1 and MC2 significantly contribute to lumbar instability. The extents of MCs lesion involvement are strongly associated with lumbar instability. However, different lumbar levels involved by MCs have little effect on lumbar stability.


Assuntos
Degeneração do Disco Intervertebral , Instabilidade Articular , Doenças da Coluna Vertebral , Adulto , Humanos , Estudos Retrospectivos , Doenças da Coluna Vertebral/patologia , Região Lombossacral/patologia , Imageamento por Ressonância Magnética/métodos , Fatores de Risco , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Degeneração do Disco Intervertebral/patologia
2.
Macromol Rapid Commun ; 43(20): e2200379, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35730398

RESUMO

Covalent adaptable networks (CANs) exhibit recyclability such as reprocessing, but it's a challenge to address the contradiction between reprocessing rate and performance. Here, pendent aliphatic chain anhydride monoesters are innovatively introduced into epoxy CANs based on transesterification, which efficiently accelerates the reprocessing without sacrificing thermal and mechanical properties. The transesterification rate is raised on account of the flexible aliphatic chain-promoted segment movement and dynamic transfer auto-catalysis. When the carbon number reflecting the length of the pendent chain is 12, the epoxy CAN exhibits the fastest stress relaxation or reprocessing. Computation via molecular dynamics simulation demonstrates that the increased segmental mobility from the pendent aliphatic chains contributes to enhanced reprocessability. Interestingly, the crystallization of the pendent aliphatic chains maintains or even improves the thermal and mechanical properties. Thus, introducing a flexible and crystallizable aliphatic side chain is an innovative and efficient approach to accelerate dynamic reactions and network arrangement while improving performance.

3.
Br J Neurosurg ; : 1-8, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524042

RESUMO

OBJECTIVE: This retrospective study investigated the clinical and radiographic outcomes following temporary transpedicular posterior instrumentation between two cohorts of patients with thoracolumbar fractures (TLF) who underwent selective or bi-segments intervertebral articular process fusion. METHODS: Patients with TLF who underwent the temporary posterior fixation with selective fusion (Group SF), or bi-segments fusion (Group BF) were studied. Superior intervertebral articular process and interlaminar fusion were performed in Group SF, whereas in Group BF, the patients underwent bi-segments fusion in both superior and inferior articular processes, as well as interlaminar fusion. We measured the distal and proximal intervertebral mobility, regional kyphotic angle, and vertebral height before and after surgery in both groups. Greenough Low-Back Outcome Score was used to assess the clinical outcomes. RESULTS: Sixty-five patients with TLF from T12 to L2 fractures were enrolled in the study period: 33 patients in the Group SF and 32 patients in the Group BF. All the patients experienced fracture healing (mean follow-up time: 19.7 months). The mean postoperative functional outcomes were 65.0 ± 2.0 points for the Low-Back Outcome Score in the Group SF and 65.2 ± 1.8 for the Group BF. A progressive regional kyphotic angle was observed with time regardless of fusion but was not significantly different between the two groups. There was a statistical difference between unfused inferior proximal adjacent and inferior distal adjacent segment regardless of fracture segments. CONCLUSIONS: The strategy of selective fusion is reported to be useful for the treatment of patients with TLF. The motion in the un-fused and adjacent segment could be better regained after instrumentation removal in the selective fusion group. LEVEL OF EVIDENCE: Level 3.

4.
Eur Spine J ; 29(10): 2609-2618, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504265

RESUMO

PURPOSE: This study aimed to evaluate facet joint parameters and osteoarthritis grades, and segmental angular and translational motions among different grades of L5/S1 intervertebral disc (IVD) degeneration. METHODS: This retrospective study analysed kinematic magnetic resonance imaging (kMRI) images of the lumbar spine of 214 patients with low back pain. Degenerations of the L5/S1 IVDs and facet joints osteoarthritis were assessed using the Pfirrmann and Pathria grading scales, respectively. Facet joint parameters included facet joint angle and facet joint space width. Angular and translation segmental motions were measured using MRI Analyzer software. RESULTS: The mean age of the studied patients was 44.1 ± 13.9 years. Patients with L5/S1 disc degeneration were associated with higher odds of facet joint osteoarthritis (odds ratio = 2.28, 95% confidence interval = 1.23-4.23, P = 0.008). There was a positive correlation between L5/S1 disc degeneration grade and the facet joint grade (r = 0.365, P > 0.001). Grade IV facet joint osteoarthritis did not appear in grades I or II disc degeneration (P > 0.001). The average facet joint width decreased significantly with increasing Pfirrmann grading (P = 0.017). The difference in facet joint angle between groups was not statistically significant (P = 0.532). The differences in the angular and translational motions were not statistically significant (P = 0.530, and 0.510, respectively). CONCLUSION: A positive correlation exists between L5/S1 disc degeneration and facet joint osteoarthritis grades. The facet joint space width decreases significantly with increasing grade of disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Articulação Zigapofisária , Adulto , Fenômenos Biomecânicos , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Retrospectivos , Articulação Zigapofisária/diagnóstico por imagem
5.
Eur Spine J ; 29(11): 2713-2721, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31309331

RESUMO

INTRODUCTION: We investigated a new metric for assessing the quality of motion of the cervical segments over the arc of extension-to-flexion motion after cervical disc arthroplasty (CDA). We quantified: (1) the amount of motion contributed by individual spinal segments to the total cervical spine motion, termed segmental motion fraction, and its variation throughout the arc of extension-to-flexion motion and (2) how cervical disc arthroplasty using two distinct prosthesis designs may influence the segmental motion contributions. MATERIALS AND METHODS: We tested 16 human C3-T1 spine specimens under physiologic loads; first intact, after CDA at C5-C6, and then at C5-C6 and C6-C7. The M6-C (Orthofix, USA) and Mobi-C (Zimmer, USA) disc prostheses were used in eight specimens each. RESULTS AND CONCLUSIONS: The designs of the cervical disc prostheses tested significantly influenced the variation in segmental motion fraction as the spine underwent motion between the endpoints of extension and flexion. While the mean segmental motion contribution to the total cervical motion was not influenced by prosthesis design, the way the motion took place between the extension and flexion endpoints was significantly influenced. The M6-C artificial disc restored physiologic motion quality such that implanted segments continued to function in harmony with other segments of the cervical spine as measured before arthroplasty. Conversely, the Mobi-C prosthesis, while maintaining average motion contributions similar to the pre-implantation values, demonstrated large deviations in motion contribution over the extension-to-flexion arc motion in ten of 16 implanted segments. Such non-physiologic implant kinematics could cause excessive prosthesis wear and motion and stress shielding at adjacent segments. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Artroplastia , Disco Intervertebral , Fenômenos Biomecânicos , Vértebras Cervicais/cirurgia , Humanos , Disco Intervertebral/cirurgia , Desenho de Prótese , Amplitude de Movimento Articular
6.
Eur Spine J ; 27(5): 1127-1135, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29181575

RESUMO

PURPOSE: The relationship between biomechanical instability and degenerative changes in the lumbar spine in chronic low back pain (CLBP) patients remains controversial. The main objective of this retrospective radiographical study was to evaluate changes in kinematics at different lumbar levels (in particular the L5-S1 level) with progressive grades of disc degeneration and facet joint osteoarthritis in CLBP patients. METHODS: Using standing neutral and dynamic flexion/extension (Fx/Ex) radiographs of the lumbar spine, in vivo segmental kinematics at L1-L2 through L5-S1 were evaluated in 72 consecutive CLBP patients. Disc degeneration was quantified using changes in signal intensity and central disc height on mid-sagittal T2-weighted magnetic resonance (MR) scans. Additionally, the presence or absence of facet joint osteoarthritis was noted on T2-weighted axial MR scans. RESULTS: Disc degeneration and facet joint osteoarthritis occurred independent of each other at the L5-S1 level (p = 0.188), but an association was observed between the two at L4-L5 (p < 0.001) and L3-L4 (p < 0.05) levels. In the absence of facet joint osteoarthritis, the L5-S1 segment showed a greater range of motion (ROM) in Ex (3.3° ± 3.6°) and a smaller ROM in Fx (0.6° ± 4.2°) compared with the upper lumbar levels (p < 0.05), but the differences diminished in the presence of it. In the absence of facet joint osteoarthritis, no change in L5-S1 kinematics was observed with progressive disc degeneration, but in its presence, restabilisation of the L5-S1 segment was observed between mild and severe disc degeneration states. CONCLUSION: The L5-S1 motion segment exhibited unique degenerative and kinematic characteristics compared with the upper lumbar motion segments. Disc degeneration and facet joint osteoarthritis occurred independent of each other at the L5-S1 level, but not at the other lumbar levels. Severe disc degeneration in the presence of facet joint osteoarthritis biomechanically restabilised the L5-S1 motion segment.


Assuntos
Dor Crônica , Dor Lombar , Vértebras Lombares , Sacro , Fenômenos Biomecânicos , Dor Crônica/diagnóstico por imagem , Dor Crônica/fisiopatologia , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/fisiopatologia , Dor Lombar/diagnóstico por imagem , Dor Lombar/fisiopatologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiopatologia , Osteoartrite da Coluna Vertebral/diagnóstico por imagem , Osteoartrite da Coluna Vertebral/fisiopatologia , Radiografia , Estudos Retrospectivos , Sacro/diagnóstico por imagem , Sacro/fisiopatologia
7.
Sports Biomech ; 14(1): 18-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25895607

RESUMO

Tortuosity describes how twisted or how much curvature is present in an observed movement or path. The purpose of this study was to investigate the differences in segmental tortuosity between Star Excursion Balance Test (SEBT) reach directions. Fifteen healthy participants completed this study. Participants completed the modified three direction (anterior, posteromedial, posterolateral) SEBT with three-dimensional motion analysis using an 8 camera BTS Smart 7000DX motion analysis system. The tortuosity of stance limb retro-reflective markers was then calculated and compared between reach directions using a 1 × 3 ANOVA with repeated measures, while the relationship between SEBT performance and tortuosity was established using Pearson product moment correlations. Anterior superior iliac spine tortuosity was significantly greater (p < 0.001) and lateral knee tortuosity was lesser (p = 0.018) in the anterior direction compared to the posteromedial and posterolateral directions. In addition, second metatarsal tortuosity was greater in the anterior reach direction when compared to posteromedial direction (p = 0.024). Tortuosity is a novel biomechanical measurement technique that provides an assessment of segmental movement during common dynamic tasks such as the SEBT. This enhanced level of detail compared to more global measures of joint kinematic may provide insight into compensatory movement strategies adopted following lower extremity joint injury.


Assuntos
Extremidade Inferior/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Movimento , Projetos Piloto , Estudos de Tempo e Movimento , Adulto Jovem
8.
J Biomech ; 176: 112352, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39357342

RESUMO

Object lifting is often categorized into squat and stoop techniques, with the former believed to protect the back by maintaining a neutral spine, and the latter considered harmful due to spinal flexion. Despite the widespread promotion of these beliefs, there is no evidence to support such dichotomy, as spinal flexion is not conclusively linked to low back pain. This study aimed to investigate intervertebral disc deformation in the lower lumbar spine during squat and stoop lifting using indwelling bone pins. Five healthy males underwent insertion of Kirschner wires into the L3, L4, and L5 spinous processes, followed by biomechanical data collection using magnetic and optical tracking systems during upright standing, isolated flexion/extension, and object lifting with both squat and stoop techniques. Except for one subject, stoop lifting resulted in up to 90 % greater disc wedging compared to squat lifting, with a significant difference at L4/L5 (p = 0.042). The anterior annulus fibrosus experienced 10 % to 40 % more compression during stoop lifting, but no significant differences were found in posterior annulus fibrosus expansion between techniques. Lever arms were about 35 % longer during stoop compared to squat lifting. These results indicate that even though stoop lifting generally led to greater disc deformation, significant deformation was also observed during squat lifting, challenging the notion of maintaining a neutral spine with this technique. Moreover, the considerable variability observed among participants raises concerns about the suitability of current one-size-fits-all lifting guidelines.

9.
J Biomech ; 163: 111924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38237496

RESUMO

The biomechanical literature describes axial rotation occurring coupled with lateral bending and flexion in the cervical spine. Since the head is kept level during some activities of daily living, we set out to investigate the changes in total and segmental motion that occur when a level gaze constraint is applied to cadaveric cervical spine specimens during axial rotation. 1.5Nm of left and right axial rotation moment was applied to sixteen C2-T1 cadaveric specimens with C2 unconstrained and C2 constrained to simulate level gaze. Overall and segmental motions were determined using optoelectronic motion measurement and specimen-specific kinematic modeling. Without a kinematic constraint on C2, motions were as described in the literature; namely, flexion and lateral bending to the same side as axial rotation. Keeping C2 level reduced that total axial rotation range of motion of the specimens. Changes were also produced in segmental coupled rotation in all specimens. The observed changes included completely opposite coupled motion than in the uncoupled specimens, and traditional coupled behavior at one load extreme and the opposite at the other extreme. Constraining C2 during axial rotation to simulate level gaze can produce coupled motion that differs from the classically described flexion and lateral bending to the same side as axial rotation. Statement of Clinical Significance: Activities of daily living that require the head to be kept level during axial rotation of the cervical spine may produce segmental motions that are quite different from the classically described motions with implications for biomechanical experiments and implant designers.


Assuntos
Atividades Cotidianas , Vértebras Cervicais , Humanos , Rotação , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Cadáver
10.
Int J Spine Surg ; 18(3): 249-257, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38866587

RESUMO

BACKGROUND: Anterior cervical discectomy and fusion (ACDF) is known to elicit adverse biomechanical effects on immediately adjacent segments; however, its impact on the kinematics of the remaining nonadjacent cervical levels has not been understood. This study aimed to explore the biomechanical impact of ACDF on kinematics beyond the immediate fusion site. We hypothesized that compensatory motion following single-level ACDF is not predictably distributed to adjacent segments due to compensation from noncontiguous levels. METHODS: Six fresh-frozen cervical spines (C2-T1) underwent fluoroscopic screening and sagittal and coronal reformats from computed tomography scans and were utilized to grade segmental degeneration. Each specimen was tested to 30° of flexion and extension intact and following single-level ACDF at the C5-C6 level. The motions of each vertebral body were tracked using 3-dimensional (3D) motion capture into an inverse kinematics model, facilitating correlations between the 3D reconstruction from computed tomography images and the 3D motion capture data. This model was used to calculate each level's flexion/extension range of motion (ROM). RESULTS: Single-level fusion at the C5-C6 level across all specimens resulted in a significant motion reduction of -6.8° (P = 0.002). No significant change in ROM occurred in the immediate adjacent segments C4-C5 (P = 0.07) or C6-C7 (P = 0.15). Hypermobility was observed in 2 specimens (33%) exclusively in adjacent segments. In contrast, the other 4 spines (66%) displayed hypermobility at noncontiguous segments. Hypermobility occurred in 42% (5/12) of the adjacent segments, 28% (5/18) of the noncontiguous segments, and 50% (3/6) of the cervicothoracic segments. CONCLUSION: Single-level ACDF impacts ROM beyond adjacent segments, extending to noncontiguous levels. Compensatory motion, not limited to adjacent levels, may be influenced by degenerative changes in noncontiguous segments. Surprisingly, hypermobility may not occur in adjacent segments after ACDF. CLINICAL RELEVANCE: Overall, the multifaceted biomechanical effects of ACDF underscore the need for a comprehensive understanding of cervical spine dynamics beyond immediate adjacency, and it needs to be taken into consideration when planning single-level ACDF.

11.
J Clin Med ; 12(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37109109

RESUMO

PURPOSE: Trimalleolar ankle fractures (TAFs) are common traumatic injuries. Studies have described postoperative clinical outcomes in relation to fracture morphology, but less is known about foot biomechanics, especially in patients treated for TAFs. The aim of this study was to analyze segmental foot mobility and joint coupling during the gait of patients after TAF treatment. METHODS: Fifteen patients, surgically treated for TAFs, were recruited. The affected side was compared to their non-affected side, as well as to a healthy control subject. The Rizzoli foot model was used to quantify inter-segment joint angles and joint coupling. The stance phase was observed and divided into sub-phases. Patient-reported outcome measures were evaluated. RESULTS: Patients treated for TAFs showed a reduced range of motion in the affected ankle during the loading response (3.8 ± 0.9) and pre-swing phase (12.7 ± 3.5) as compared to their non-affected sides (4.7 ± 1.1 and 16.1 ± 3.1) and the control subject. The dorsiflexion of the first metatarsophalangeal joint during the pre-swing phase was reduced (19.0 ± 6.5) when compared to the non-affected side (23.3 ± 8.7). The affected side's Chopart joint showed an increased range of motion during the mid-stance (1.3 ± 0.5 vs. 1.1 ± 0.6). Smaller joint coupling was observed on both the patient-affected and non-affected sides compared to the controls. CONCLUSION: This study indicates that the Chopart joint compensates for changes in the ankle segment after TAF osteosynthesis. Furthermore, reduced joint-coupling was observed. However, the minimal case numbers and study power limited the effect size of this study. Nevertheless, these new insights could help to elucidate foot biomechanics in these patients, adjusting rehabilitation programs, thereby lowering the risk of postoperative long-term complications.

12.
J Colloid Interface Sci ; 630(Pt A): 223-231, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242882

RESUMO

HYPOTHESIS: While the mechanical disruption of microscopic structures in complex fluids by large shear flows has been studied extensively, the effects of applied strains on the dielectric properties of macromolecular aggregates have received far less attention. Simultaneous rheology and dielectric experiments can be employed to study the dynamics of sheared colloidal suspensions over spatiotemporal scales spanning several decades. EXPERIMENTS: Using a precision impedance analyzer, we study the dielectric behavior of strongly sheared aqueous suspensions of thermoreversible hydrogel poly(N-isopropylacrylamide) (PNIPAM) particles at different temperatures. We also perform stress relaxation experiments to uncover the influence of large deformations on the bulk mechanical moduli of these suspensions. FINDINGS: All the sheared PNIPAM suspensions exhibit distinct dielectric relaxation processes in the low and high frequency regimes. At a temperature below the lower consolute solution temperature (LCST), the complex permittivities of highly dense PNIPAM suspensions decrease with increase in applied oscillatory strain amplitudes. Simultaneously, we note a counter-intuitive slowdown of the dielectric relaxation dynamics. Contrary to our rheo-dielectric findings, our bulk rheology experiments, performed under identical conditions, reveal shear-thinning dynamics with increasing strain amplitudes. We propose the shear-induced rupture of fragile clusters of swollen PNIPAM particles to explain our observations. Our work illustrates that rheo-dielectric studies have enormous potential for providing deep insights into the length scale-dependent dynamical properties of complex systems such as dense suspensions and soft glasses.


Assuntos
Hidrogéis , Água , Suspensões , Reologia , Temperatura , Água/química
13.
Sports Biomech ; 21(7): 824-836, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32022646

RESUMO

The flow of mechanical energy of segmental motion during baseball pitching is poorly understood, particularly in relation to the valgus torque at the elbow which is prone to pitching-related injuries. This study employed an induced power analysis to determine the components of muscle and velocity-dependent torques that contribute to the power of throwing arm segments when the elbow is under valgus load during the arm-cocking phase of pitching. The 3D throwing kinematics and kinetics of 10 adult pitchers were included in this analysis. Pitchers threw with a maximum elbow valgus torque of 73 ± 20 N•m. The trunk flexion and rotation components of the velocity-dependent torque were the greatest contributors to the work of the forearm at -0.53 ± 0.22 J/kg and -0.43 ± 0.21 J/kg, respectively. Approximately 86% of the total energy transferred through the elbow by the velocity-dependent torque was due to trunk motion, which appears to drive the power of accelerating the throwing elbow in valgus. These results support the importance of trunk motion as a key component in the development of elbow torque and ball velocity. Therefore, this study has practical implications for baseball pitchers seeking to minimise injury risk while improving performance.


Assuntos
Beisebol , Articulação do Cotovelo , Adulto , Braço/fisiologia , Beisebol/fisiologia , Fenômenos Biomecânicos/fisiologia , Cotovelo/fisiologia , Articulação do Cotovelo/fisiologia , Humanos , Rotação , Torque
14.
ACS Appl Mater Interfaces ; 14(50): 55653-55663, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36478468

RESUMO

Carbonyl oxygen atoms are the primary active sites to solvate Li salts that provide a migration site for Li ions conducting in a polycarbonate-based polymer electrolyte. We here exploit the conductivity of the polycarbonate electrolyte by tuning the segmental motion of the structural unit with carbonyl oxygen atoms, while its correlation to the mechanical and electrochemical stability of the electrolyte is also discussed. Two linear alkenyl carbonate monomers are designed by molecular engineering to combine methyl acrylate (MA) and the commonly used ethylene carbonate (EC), w/o dimethyl carbonate (DMC) in the structure. The integration of the DMC structural unit in the side chain of the in situ constructed polymer (p-MDE) releases the free motion of the terminal EC units, which leads to a lower glass-transition temperature and higher ionic conductivity. While pure polycarbonates are normally fragile with high Young's modulus, such a prolonged side chain also manipulates the flexibility of the polymer to provide a mechanical stable interface for Li-metal anode. Stable long-term cycling performance is achieved at room temperature for both LiFePO4 and LiCoO2 electrodes based on the p-MDE electrolyte incorporated with a solid plasticizer.

15.
Clin Biomech (Bristol, Avon) ; 88: 105442, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34390949

RESUMO

BACKGROUND: Frequently, treatment decisions for craniocervical injuries and instability are based on imaging findings, but in vivo ligament kinematics were poorly understood. This study was to determine in vivo deformation patterns of primary ligaments in the craniocervical junction (i.e., C0-2), including the cruciform ligament, alar ligaments, and accessory ligaments, during dynamic head axial rotation. METHODS: The skulls and cervical spines of eight asymptomatic female subjects were dynamically imaged using a biplane fluoroscopic imaging system, when they performed left and right head axial rotations. Using a 3D-to-2D registration technique, the in vivo positions and orientations of cervical segments were determined. An optimization algorithm was implemented to determine ligament wrapping paths, and the resulting ligament deformations were represented by percent elongations. Using paired t-tests, ligament deformations in the end-range position were compared to those in the neutral position. FINDINGS: No significant differences were observed in segmental motions during left and right head rotations (p > 0.05). In general, slight deformations occurred in each component of the cruciform ligament. For the alar ligaments, the ipsilateral ligament was lengthened from -0.7 ± 13.8% to 16.6 ± 15.7% (p < 0.001*). For the accessory ligaments, the contralateral ligament was lengthened from -2.9 ± 7.5% to 10.1 ± 6.2% (p < 0.001*). INTERPRETATION: This study reveals that there are distinct deformation patterns in craniocervical junction ligaments during dynamic axial head rotation. These ligament deformation data can enhance our understanding of the synergic function of craniocervical junction ligaments, and guide the treatment of craniocervical instability.


Assuntos
Vértebras Cervicais , Ligamentos Articulares , Fenômenos Biomecânicos , Vértebras Cervicais/diagnóstico por imagem , Feminino , Humanos , Pescoço , Amplitude de Movimento Articular
16.
J Biomech ; 123: 110513, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34038861

RESUMO

While previous studies have greatly improved our knowledge on the motion capability of the cervical spine, few reported on the kinematics of the entire head-neck complex (C0-T1) during dynamic activities of the head in the upright posture. This study investigated in vivo kinematics of the entire head-neck complex (C0-T1) of eight female asymptomatic subjects during dynamic left-right head axial rotation using a dual fluoroscopic imaging system and 3D-to-2D registration techniques. During one-sided head rotation (i.e., left or right head rotation), the primary rotation of the overall head-neck complex (C0-T1) reached 55.5 ± 10.8°, the upper cervical spine region (C0-2) had a primary axial rotation of 39.7 ± 9.6° (71.3 ± 8.5% of the overall C0-T1 axial rotation), and the lower cervical spine region (C2-T1) had a primary rotation of 10.0 ± 3.7° (18.6 ± 7.2% of the overall C0-T1 axial rotation). Coupled bending rotations occurred in the upper and lower cervical spine regions in similar magnitude but opposite directions (upper: contralateral bending of 18.2 ± 5.9° versus lower: ipsilateral bending of 21.4 ± 5.1°), resulting in a compensatory cervical lateral curvature that balances the head to rotate horizontally. Furthermore, upper cervical segments (C0-1 or C1-2) provided main mobility in different rotational degrees of freedom needed for head axial rotations. Additionally, we quantitatively described both coupled segmental motions (flexion-extension and lateral bending) by correlation with the overall primary axial rotation of the head-neck complex. This investigation offers comprehensive baseline data regarding primary and coupled motions of craniocervical segments during head axial rotation.


Assuntos
Vértebras Cervicais , Pescoço , Fenômenos Biomecânicos , Feminino , Humanos , Movimento (Física) , Amplitude de Movimento Articular
17.
Front Bioeng Biotechnol ; 9: 680769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336799

RESUMO

Background: Anterior cervical discectomy and fusion (ACDF) sacrifices segmental mobility, which can lead to the acceleration of adjacent segment degeneration. The challenge has promoted cervical artificial disc replacement (CADR) as a substitute for ACDF. However, CADR has revealed a series of new issues that are not found in ACDF, such as hypermobility, subsidence, and wear phenomenon. This study designed a cervical subtotal discectomy prosthesis (CSDP) consisting of a cervical disc prosthesis structure (CDP structure), cervical vertebra fixation structure (CVF structure), link structure, and locking screw, aiming to facilitate motion control and reduce subsidence. The aim of this study was to assess the biomechanics of the CSDP using finite element (FE) analysis, friction-wear test, and non-human primates implantation study. Study Design: For the FE analysis, based on an intact FE C2-C7 spinal model, a CSDP was implanted at C5-C6 to establish the CSDP FE model and compare it with the Prestige LP prosthesis (Medtronic Sofamor Danek, Minneapolis, MN, United States). The range of motion (ROM), bone-implant interface stress, and facet joint force were calculated under flexion extension, lateral bending, and axial rotation. In addition, CSDP was elevated 1 mm to mimic an improper implantation technique to analyze the biomechanics of CSDP errors in the FE model. Moreover, the friction-wear test was conducted in vitro to research CSDP durability and observe surface wear morphology and total wear volume. Finally, the CSDP was implanted into non-human primates, and its properties were evaluated and verified by radiology. Results: In the FE analysis, the ROM of the CSDP FE model was close to that of the intact FE model in the operative and adjacent segments. In the operative segment, the CSDP error FE model increased ROM in flexion extension, lateral bending, and axial rotation. The maximum stress in the CSDP FE model was similar to that of the intact FE model and was located in the peripheral cortical bone region. The facet joint force changes were minimal in extension, lateral bending, and axial rotation loads in CSDP. In the friction-wear test, after the 150-W movement simulation, both the CVF-link-junction and the CDP-link-junction had slight wear. In the CSDP non-human primate implantation study, no subsidence, dislocation, or loosening was observed. Conclusion: In the FE analysis, the biomechanical parameters of the CSDP FE model were relatively close to those of the intact FE model when compared with the Prestige LP FE model. In terms of CSDP error FE models, we demonstrated that the implantation position influences CSDP performance, such as ROM, bone-implant interface stress, and facet joint force. In addition, we performed a friction-wear test on the CSDP to prove its durability. Finally, CSDP studies with non-human primates have shown that the CSDP is effective.

18.
Polymers (Basel) ; 12(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825628

RESUMO

The physical properties of polymers depend on a range of both structural and chemical parameters, and in particular, on molecular topology. Apparently simple changes such as joining chains at a point to form stars or simply joining the two ends to form a ring can profoundly alter molecular conformation and dynamics, and hence properties. Cyclic polymers, as they do not have free ends, represent the simplest model system where reptation is completely suppressed. As a consequence, there exists a considerable literature and several reviews focused on high molecular weight cyclics where long range dynamics described by the reptation model comes into play. However, this is only one area of interest. Consideration of the conformation and dynamics of rings and chains, and of their mixtures, over molecular weights ranging from tens of repeat units up to and beyond the onset of entanglements and in both solution and melts has provided a rich literature for theory and simulation. Experimental work, particularly neutron scattering, has been limited by the difficulty of synthesizing well-characterized ring samples, and deuterated analogues. Here in the context of the broader literature we review investigations of local conformation and dynamics of linear and cyclic polymers, concentrating on poly(dimethyl siloxane) (PDMS) and covering a wide range of generally less high molar masses. Experimental data from small angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), including Neutron Spin Echo (NSE), are compared to theory and computational predictions.

19.
ACS Appl Mater Interfaces ; 12(20): 23244-23251, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32336081

RESUMO

The light-emitting layer (EML) is generally prepared by mixing the host and dopant to realize an organic light-emitting diode (OLED). However, phase separation is often observed during the fabrication process to prepare OLEDs, depending on the structure of the host materials. In particular, phase separation because of π-π stacking is frequently observed during thermal annealing for the solution process. The annealing process is required for solvent removal and complete relaxation of the molecule. Hence, the materials with a high glass transition temperature (Tg) are ideal because phase separation occurs because of π-π stacking during the annealing process, if Tg is too low. To understand this phenomenon, we compared two host materials with similar molecular weights but different three-dimensional connectivity, which causes different rotational freedom. Then, we investigated the effect on the device properties, depending on the annealing conditions. In both materials, when the annealing temperature rises above 120 °C, the dopant completely escaped from the EML. However, the material that does not disturb the molecular stacking order by annealing because of its limited free rotation through the internal bond shows much better device characteristics even after annealing at a higher temperature than Tg. The results show that interdiffusion at the interface and unstable internal density distribution with annealing temperature are responsible for the device degradation behavior.

20.
Orthop J Sports Med ; 7(2): 2325967119827924, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828584

RESUMO

BACKGROUND: Pitching-related elbow injuries remain prevalent across all levels of baseball. Elbow valgus torque has been identified as a modifiable risk factor of injuries to the ulnar collateral ligament in skeletally mature pitchers. PURPOSE: To examine how segmental energy flow (power) influences elbow valgus torque and ball speed in professional versus high school baseball pitchers. STUDY DESIGN: Descriptive laboratory study. METHODS: A total of 16 professional pitchers (mean age, 21.9 ± 3.6 years) and 15 high school pitchers (mean age, 15.5 ± 1.1 years) participated in marker-based motion analysis of baseball pitching. Ball speed, maximum elbow valgus torque (MEV), temporal parameters, and mechanical power of the trunk, upper arm, and forearm were collected and compared using parametric statistical methods. RESULTS: Professional pitchers threw with a higher ball speed (36.3 ± 2.9 m/s) compared with high school pitchers (30.4 ± 3.5 m/s) (P = .001), and MEV was greater in professional pitchers (71.3 ± 20.0 N·m) than in high school pitchers (50.7 ± 14.6 N·m) (P = .003). No significant difference in normalized MEV was found between groups (P = .497). Trunk rotation time, trunk power, and upper arm power combined to predict MEV (r = 0.823, P < .001), while trunk rotation time and trunk power were the only predictors of ball speed (r = 0.731, P < .001). There were significant differences between the professional and high school groups in the timing of maximum pelvis rotation velocity (42.9 ± 9.7% of the pitching cycle [%PC] vs 27.9 ± 23.4 %PC, respectively; P < .025), maximum trunk rotation (33 ± 16 %PC vs 2 ± 23 %PC, respectively; P = .001), and maximum shoulder internal rotation velocity (102.4 ± 8.9 %PC vs 93.0 ± 11.7 %PC, respectively; P = .017). CONCLUSION: The power of trunk motion plays a critical role in the development of elbow valgus torque and ball speed. Professional and high school pitchers do not differ in elbow torque relative to their respective size but appear to adopt different patterns of segmental motion. CLINICAL RELEVANCE: Because trunk rotation supplies the power associated with MEV and ball speed, training methods aimed at core stabilization and flexibility may benefit professional and high school pitchers in reducing the injury risk and improving pitching performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA