RESUMO
Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.
Assuntos
Lobo Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Adulto , Mapeamento Encefálico , Lobo Frontal/anatomia & histologia , Corpo Humano , Humanos , Córtex Motor/metabolismo , Movimento/fisiologiaRESUMO
Robot grasping constitutes an essential capability in fulfilling the complexities of advanced industrial operations. This field has been extensively investigated to address a range of practical applications. However, the generation of a stable grasp remains challenging, principally due to the constraints imposed by object geometries and the diverse objectives of the tasks. In this work, we propose a novel learning from demonstration-based grasp-planning framework. This framework is designed to extract crucial human grasp skills, namely the contact region and approach direction, from a single demonstration. Then, it formulates an optimization problem that integrates the extracted skills to generate a stable grasp. Distinct from conventional methods that rely on learning implicit synergies through human demonstration or on mapping the dissimilar kinematics between human hands and robot grippers, our approach focuses on learning the intuitive human intent that involves the potential contact regions and the grasping approach direction. Furthermore, our optimization formulation is capable of identifying the optimal grasp by minimizing the surface fitting error between the demonstrated contact regions on the object and the gripper finger surface and imposing a penalty for any misalignment between the demonstrated and the gripper's approach directions. A series of experiments is conducted to verify the effectiveness of the proposed algorithm through both simulations and real-world scenarios.
RESUMO
BACKGROUND: Internationally qualified nurses are highly sought after as a labour source due to continued shortages in the nursing profession in most developed countries. However, the lack of clear policies and procedures for nurses in the host country to use specialty nursing skills can result in the underutilisation of their expertise. OBJECTIVES: To review the registration processes of internationally qualified nurses in 20 developed countries, with a focus on the transferability of specialised skills gained overseas. METHODS: A multicentre policy review design was used, using the STROBE reporting guidelines. The study sourced policy information from nurse registration bodies in developed countries and reviewed and removed redundant policies. RESULTS: Out of 34 policies initially identified, 26 were used to show the registration process of nurses after immigration to developed countries. Only four of the 20 countries reviewed indicated the option of specialised nurse registration on their website for internationally qualified nurses, with a university qualification required before years of experience. All other countries indicated the general registration pathway only. IMPLICATIONS FOR NURSING POLICY: More attention is needed to address the lack of well-defined policies that guide the utilisation of internationally qualified nurses' specialised skills. Transparent procedures are essential to fully benefit from their expertise in the host country's health workforce.
RESUMO
Deep Reinforcement Learning (DRL) algorithms have been widely studied for sequential decision-making problems, and substantial progress has been achieved, especially in autonomous robotic skill learning. However, it is always difficult to deploy DRL methods in practical safety-critical robot systems, since the training and deployment environment gap always exists, and this issue would become increasingly crucial due to the ever-changing environment. Aiming at efficiently robotic skill transferring in a dynamic environment, we present a meta-reinforcement learning algorithm based on a variational information bottleneck. More specifically, during the meta-training stage, the variational information bottleneck first has been applied to infer the complete basic tasks for the whole task space, then the maximum entropy regularized reinforcement learning framework has been used to learn the basic skills consistent with that of basic tasks. Once the training stage is completed, all of the tasks in the task space can be obtained by a nonlinear combination of the basic tasks, thus, the according skills to accomplish the tasks can also be obtained by some way of a combination of the basic skills. Empirical results on several highly nonlinear, high-dimensional robotic locomotion tasks show that the proposed variational information bottleneck regularized deep reinforcement learning algorithm can improve sample efficiency by 200-5000 times on new tasks. Furthermore, the proposed algorithm achieves substantial asymptotic performance improvement. The results indicate that the proposed meta-reinforcement learning framework makes a significant step forward to deploy the DRL-based algorithm to practical robot systems.
Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Robótica/métodos , Algoritmos , Aclimatação , LocomoçãoRESUMO
BACKGROUND: Physical and virtual surgical simulators are increasingly being used in training technical surgical skills. However, metrics such as completion time or subjective performance checklists often show poor correlation to transfer of skills into clinical settings. We hypothesize that non-invasive brain imaging can objectively differentiate and classify surgical skill transfer, with higher accuracy than established metrics, for subjects based on motor skill levels. STUDY DESIGN: 18 medical students at University at Buffalo were randomly assigned into control, physical surgical trainer, or virtual trainer groups. Training groups practiced a surgical technical task on respective simulators for 12 consecutive days. To measure skill transfer post-training, all subjects performed the technical task in an ex-vivo environment. Cortical activation was measured using functional near-infrared spectroscopy (fNIRS) in the prefrontal cortex, primary motor cortex, and supplementary motor area, due to their direct impact on motor skill learning. RESULTS: Classification between simulator trained and untrained subjects based on traditional metrics is poor, where misclassification errors range from 20 to 41%. Conversely, fNIRS metrics can successfully classify physical or virtual trained subjects from untrained subjects with misclassification errors of 2.2% and 8.9%, respectively. More importantly, untrained subjects are successfully classified from physical or virtual simulator trained subjects with misclassification errors of 2.7% and 9.1%, respectively. CONCLUSION: fNIRS metrics are significantly more accurate than current established metrics in classifying different levels of surgical motor skill transfer. Our approach brings robustness, objectivity, and accuracy in validating the effectiveness of future surgical trainers in translating surgical skills to clinically relevant environments.
Assuntos
Encéfalo/diagnóstico por imagem , Competência Clínica , Simulação por Computador , Educação Médica/métodos , Neuroimagem/métodos , Neurocirurgia/educação , Estudantes de Medicina , Adulto , Feminino , Humanos , Aprendizagem , Masculino , Interface Usuário-ComputadorRESUMO
BACKGROUND: There is limited evidence on the transferability of conventional laparoscopic and open surgical skills to robotic-assisted surgery. The primary aim of this study was to evaluate the transferability of expertise in conventional laparoscopy and open surgery to robotic-assisted surgery using the da Vinci Skills Simulator (dVSS). Secondary aims included evaluating the influence of individual participants' characteristics. METHODS: Participants performed four tasks on the dVSS: Peg Board 1 (PB), Pick and Place (PP), Thread the Rings (TR), and Suture Sponge 1 (SS). Participants were classified into three groups (Novice, Intermediate, Experts) according to experience in laparoscopic and open surgery. All tasks were performed twice except for SS. Performance was assessed using the built-in scoring system. RESULTS: 37 medical students and 25 surgeons participated. Experts did not perform significantly better than less experienced participants on the dVSS. Specifically, with regard to laparoscopic experience, total simulator scores were: Novices 68.2 ± 28.8; Intermediates 65.1 ± 31.2; Experts 65.1 ± 30.0; p = 0.611. Regarding open surgical experience, scores were: Novices 68.6 ± 28.7; Intermediates 68.2 ± 30.8; Experts 63.2 ± 30.3; p = 0.305. Although there were some significant differences among groups for single parameters in specific tasks, there was no constant superiority of one group. Laparoscopic and open surgical Novices improved significantly in overall score and time for all three tasks (p < 0.05). Laparoscopic intermediates improved only in PP time (4.64 ± 3.42; p = 0.006), open Intermediates in PB score (11.98 ± 13.01; p = 0.025), and open Experts in PP score (6.69 ± 11.48; p = 0.048). Laparoscopic experts showed no improvement. Participants with gaming experience had better overall scores than non-gamers when comparing all second attempts (Gamer 83.62 ± 7.57; Non-Gamer 76.31 ± 12.78; p = 0.008) as well as first and second attempts together (Gamer 72.08 ± 8.86; Non-Gamer 65.45 ± 11.68; p = 0.039). Musical and sports experience showed no correlation with robotic performance. CONCLUSIONS: Robotic-assisted surgery requires skills distinct from conventional laparoscopy or open surgery. Basic robotic skills training prior to patient contact should be required.
Assuntos
Competência Clínica/normas , Internato e Residência , Laparoscopia/educação , Procedimentos Cirúrgicos Robóticos/educação , Treinamento por Simulação , Cirurgiões/educação , Feminino , Humanos , Laparoscopia/métodos , Estudos Prospectivos , Procedimentos Cirúrgicos Robóticos/normas , Análise e Desempenho de TarefasRESUMO
BACKGROUND: Skill transfer represents an important issue in surgical education, and is not well understood. The aim of this randomized study is to assess the transferability of surgical skills between two laparoscopic abdominal procedures using the virtual reality simulator in surgical novices. METHODS: From September 2016 to July 2017, 44 surgical novices were randomized into two groups and underwent a proficiency-based basic training consisting of five selected simulated laparoscopic tasks. In group 1, participants performed an appendectomy training on the virtual reality simulator until they reached a defined proficiency. They moved on to the tutorial procedural tasks of laparoscopic cholecystectomy. Participants in group 2 started with the tutorial procedural tasks of laparoscopic cholecystectomy directly. Finishing the training, participants of both groups were required to perform a complete cholecystectomy on the simulator. Time, safety and economy parameters were analysed. RESULTS: Significant differences in the demographic characteristics and previous computer games experience between the two groups were not noted. Both groups took similar time to complete the proficiency-based basic training. Participants in group 1 needed significantly less movements (388.6 ± 98.6 vs. 446.4 ± 81.6; P < 0.05) as well as shorter path length (810.2 ± 159.5 vs. 945.5 ± 187.8 cm; P < 0.05) to complete the cholecystectomy compared to group 2. Time and safety parameters did not differ significantly between both groups. CONCLUSION: The data demonstrate a positive transfer of motor skills between laparoscopic appendectomy and cholecystectomy on the virtual reality simulator; however, the transfer of cognitive skills is limited. Separate training curricula seem to be necessary for each procedure for trainees to practise task-specific cognitive skills effectively. Mentoring could help trainees to get a deeper understanding of the procedures, thereby increasing the chance for the transfer of acquired skills.
Assuntos
Educação de Graduação em Medicina/métodos , Laparoscopia/educação , Treinamento por Simulação/métodos , Realidade Virtual , Adulto , Competência Clínica , Cognição , Currículo , Feminino , Alemanha , Humanos , Laparoscopia/psicologia , Masculino , Destreza Motora , Estudos ProspectivosRESUMO
INTRODUCTION: Research has clearly shown the benefits of surgical simulators to train laparoscopic motor skills required for positive patient outcomes. We have developed the Virtual Basic Laparoscopic Skill Trainer (VBLaST) that simulates tasks from the Fundamentals of Laparoscopic Surgery (FLS) curriculum. This study aims to show convergent validity of the VBLaST pattern cutting module via the CUSUM method to quantify learning curves along with motor skill transfer from simulation environments to ex vivo tissue samples. METHODS: 18 medical students at the University at Buffalo, with no prior laparoscopic surgical skills, were placed into the control, FLS training, or VBLaST training groups. Each training group performed pattern cutting trials for 12 consecutive days on their respective simulation trainers. Following a 2-week break period, the trained students performed three pattern cutting trials on each simulation platform to measure skill retention. All subjects then performed one pattern cutting task on ex vivo cadaveric peritoneal tissue. FLS and VBLaST pattern cutting scores, CUSUM scores, and transfer task completion times were reported. RESULTS: Results indicate that the FLS and VBLaST trained groups have significantly higher task performance scores than the control group in both the VBLaST and FLS environments (p < 0.05). Learning curve results indicate that three out of seven FLS training subjects and four out of six VBLaST training subjects achieved the "senior" performance level. Furthermore, both the FLS and VBLaST trained groups had significantly lower transfer task completion times on ex vivo peritoneal tissue models (p < 0.05). CONCLUSION: We characterized task performance scores for trained VBLaST and FLS subjects via CUSUM analysis of the learning curves and showed evidence that both groups have significant improvements in surgical motor skill. Furthermore, we showed that learned surgical skills in the FLS and VBLaST environments transfer not only to the different simulation environments, but also to ex vivo tissue models.
Assuntos
Educação de Graduação em Medicina/métodos , Laparoscopia/educação , Treinamento por Simulação/métodos , Realidade Virtual , Competência Clínica , Humanos , Laparoscopia/métodos , Curva de Aprendizado , New York , Reprodutibilidade dos Testes , Análise e Desempenho de Tarefas , Interface Usuário-ComputadorRESUMO
Today's educational environment has made it more difficult to rely on the Halstedian model of "see one, do one, teach one" in gynecologic surgical training. There is decreased surgical volume, but an increased number of surgical modalities. Fortunately, surgical simulation has evolved to fill the educational void. Whether it is through skill generalization or skill transfer, surgical simulation has shifted learning from the operating room back to the classroom. This article explores the principles of surgical education and ways to introduce simulation as an adjunct to residency training. We review high- and low-fidelity surgical simulators, discuss the progression of surgical skills, and provide options for skills competency assessment. Time and money are major hurdles when designing a simulation curriculum, but low-fidelity models, intradepartmental cost sharing, and utilizing local experts for simulation proctoring can aid in developing a simulation program.
Assuntos
Procedimentos Cirúrgicos em Ginecologia/educação , Ginecologia/educação , Treinamento por Simulação/métodos , Competência Clínica , Currículo , Educação de Pós-Graduação em Medicina , Feminino , Humanos , Transferência de ExperiênciaRESUMO
Tennis coaches often use the fundamental throwing skill as a training tool to develop the service action. However, recent skill acquisition literature questions the efficacy of non-specific training drills for developing complex sporting movements. Thus, this study examined the mechanical analogy of the throw and the tennis serve at three different levels of development. A 500 Hz, 22-camera VICON MX motion capture system recorded 28 elite female tennis players (prepubescent (n = 10), pubescent (n = 10), adult (n = 8)) as they performed flat serves and overhand throws. Two-way ANOVAs with repeated measures and partial correlations (controlling for group) assessed the strength and nature of the mechanical associations between the tasks. Preparatory mechanics were similar between the two tasks, while during propulsion, peak trunk twist and elbow extension velocities were significantly higher in the throw, yet the peak shoulder internal rotation and wrist flexion angular velocities were significantly greater in the serve. Furthermore, all of these peak angular velocities occurred significantly earlier in the serve. Ultimately, although the throw may help to prime transverse trunk kinematics in the serve, mechanics in the two skills appear less similar than many coaches seem to believe. Practitioners should, therefore, be aware that the throw appears less useful for priming the specific arm kinematics and temporal phasing that typifies the tennis serve.
Assuntos
Destreza Motora/fisiologia , Tênis/fisiologia , Adolescente , Fatores Etários , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Educação Física e Treinamento/métodos , Estudos de Tempo e Movimento , Tronco/fisiologia , Extremidade Superior/fisiologia , Adulto JovemRESUMO
Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H2(15)O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy.
Assuntos
Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Análise e Desempenho de Tarefas , Estimulação Magnética Transcraniana , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Córtex Motor/diagnóstico por imagem , Plasticidade Neuronal/fisiologia , Tomografia por Emissão de PósitronsRESUMO
Inhibition control is an essential executive function during children's development, underpinning self-regulation and the acquisition of social and language abilities. This executive function is intensely engaged in music training while learning an instrument, a complex multisensory task requiring monitoring motor performance and auditory stream prioritization. This novel meta-analysis examined music-based training on inhibition control in children. Records from 1980 to 2023 yielded 22 longitudinal studies with controls (N = 1734), including 8 RCTs and 14 others. A random-effects meta-analysis showed that music training improved inhibition control (moderate-to-large effect size) in the RCTs and the superset of twenty-two longitudinal studies (small-to-moderate effect size). Music training plays a privileged role compared to other activities (sports, visual arts, drama) in improving children's executive functioning, with a particular effect on inhibition control. We recommend music training for complementing education and as a clinical tool focusing on inhibition control remediation (e.g., in autism and ADHD).
Assuntos
Função Executiva , Inibição Psicológica , Música , Criança , Humanos , Desenvolvimento Infantil/fisiologia , Função Executiva/fisiologia , Música/psicologia , MusicoterapiaRESUMO
As the application of robotic approaches to surgery continues to broaden, new consoles have been introduced to the market. Due to the global utilization of a single platform, previously validated curricula have not been assessed on new robotic systems. Surgery by its nature occurs in a high-stakes environment, potentially exacerbated by non-standardized robotic systems. The aim of this review is to critique the evidence available regarding the transferability of technical skills across robotic platforms. A scoping review utilizing the Medline (Pubmed) and Cochrane Databases was conducted. Full texts were reviewed and appraised. Selected articles were eligible for inclusion if they investigated the ability or implications of the transfer of skill across robotic platforms. Data was extracted, coded inductively, and themes synthesized. NVIVO software was used as an adjunct for this qualitative analysis. Following the removal of duplicates a total of 278 papers were screened according to the eligibility criteria. Fifty full-text articles were reviewed and four met the criterion for inclusion. Novices' performance across platforms was comparable. Increasing levels of prior robotic experience revealed an improvement in technical performance on a novel robotic platform. Safety metrics appear comparable across systems. Quantifying learning curves across robotic platforms and their implications for the robotic surgeon in training remains to be determined. Future research needs to address the gaps in the literature by clearly defining the extent of technical skills transfer between robotic platforms. These factors will guide the next iteration of surgical training curriculums and regulations for robotic surgery.
RESUMO
Determining post-PhD career options is a challenge for many Psychology PhD graduates. Here I provide a comprehensive overview of the diverse career trajectories available to graduates, drawing from interviews with 53 PhD graduates conducted as part of the two-volume Academia and the World Beyond book series. From these, I conducted a hierarchical qualitative classification to categorise and characterise potential career paths. The findings reveal a spectrum of opportunities, from traditional academic roles to "academic adjacent" and "skill-transfer" careers. This work underscores the versatility of Psychology doctoral training, providing skills that can support a wide array of career possibilities. The results serve as a guide for current and prospective PhD students-and their mentors-emphasising the variety of professional contexts where doctoral training is beneficial.
RESUMO
INTRODUCTION: The objective of this study was to compare the quality of care between French nurses and physicians in the prehospital management of hypoglycemic patients. METHODS: Response times, concordance with medical protocols/recommendations, quality of medical records, and percentage of hospitalized patients were evaluated. RESULTS: A total of 33 patients were treated for hypoglycemia by the nurse group and 41 by the physician group. The groups were similar in terms of response rates (mean time of 00:08 ± 00:06 minutes for nurses and 00:10 ± 00:09 minutes for doctors). For 51 patients not requiring hospitalization, the proportion was similar in each group (47.1% and 52.9% for nurses and doctors, respectively). The nurse group showed significantly higher mean scores for concordance with recommendations (P < .001) and quality of medical records (P = .005). DISCUSSION: In the management of hypoglycemic patients, the quality of care of an emergency ambulance team composed of nurses was comparable to that of doctors.
Assuntos
Serviços Médicos de Emergência/normas , Enfermagem em Emergência/normas , Hipoglicemia/terapia , Enfermeiras e Enfermeiros/normas , Médicos/normas , Qualidade da Assistência à Saúde/normas , Ambulâncias/normas , Ambulâncias/estatística & dados numéricos , Competência Clínica/normas , Competência Clínica/estatística & dados numéricos , Serviços Médicos de Emergência/estatística & dados numéricos , Enfermagem em Emergência/estatística & dados numéricos , Feminino , França , Fidelidade a Diretrizes/normas , Fidelidade a Diretrizes/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Prontuários Médicos/normas , Prontuários Médicos/estatística & dados numéricos , Pessoa de Meia-Idade , Enfermeiras e Enfermeiros/estatística & dados numéricos , Médicos/estatística & dados numéricos , Qualidade da Assistência à Saúde/estatística & dados numéricos , Estudos RetrospectivosRESUMO
Due to its advantages over open surgery and conventional laparoscopy, uptake of robot-assisted surgery has rapidly increased. It is important to know whether the existing open or laparoscopic skills of robotic novices shorten the robotic surgery learning curve, potentially reducing the amount of training required. This systematic review aims to assess psychomotor skill transfer to the robot in clinical and simulated settings. PubMed, EMBASE, Cochrane Library and Scopus databases were systematically searched in accordance with PRISMA guidelines from inception to August 2021 alongside website searching and citation chaining. Article screening, data extraction and quality assessment were undertaken by two independent reviewers. Outcomes included simulator performance metrics or in the case of clinical studies, peri- and post-operative metrics. Twenty-nine studies met the eligibility criteria. All studies were judged to be at high or moderate overall risk of bias. Results were narratively synthesised due to heterogeneity in study designs and outcome measures. Two of the three studies assessing open surgical skill transfer found evidence of successful skill transfer while nine of twenty-seven studies evaluating laparoscopic skill transfer found no evidence. Skill transfer from both modalities is most apparent when advanced robotic tasks are performed in the initial phase of the learning curve but quality and methodological limitations of the existing literature prevent definitive conclusions. The impact of incorporating laparoscopic simulation into robotic training curricula and on the cost effectiveness of training should be investigated.
Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Competência Clínica , Simulação por Computador , Laparoscopia/métodosRESUMO
Sailing has gained an increasing attention among children and adolescents in China, which raised a strong need for sail courses through physical education (PE). However, challenges in teaching practice arise with rapid development of the sport. In the current study, we proposed a perspective that virtual reality (VR) technology makes high-quality sail education accessible for students. Critical analysis summarized the prominent features that enhance sail education, including immersive experience, interactive learning, the first-person view, and practice under well-controlled conditions. Further, research on VR sport training indicated successful transfer from virtual environment to real situation. Specifically, significant improvement in skill performance and tactical behaviors were identified, which was attributed to the enhanced perception-action coupling after VR training. Additionally, VR-based coding programs provide students with affordances of designing the virtual environment. The content design education promotes comprehension and application of knowledge and theories when students develop the simulated environment with a high level of presence. Therefore, VR technology is a promising instrument to meet the increasing demand on sail education. While VR enriches educational resources for a large class size, the interdisciplinary feature of VR-based sail course can attract students with different study interests and backgrounds to the class.
RESUMO
The acquisition of advanced gestures is a challenge in various domains of proficient sensorimotor performance. For example, orchestral violinists must move in sync with the lead violinist's gestures. To help train these gestures, an educational music play-back system was developed using a HoloLens 2 simulated AR environment and an avatar representation of the lead violinist. This study aimed to investigate the impact of using a 2D or 3D representation of the lead violinist's avatar on students' learning experience in the AR environment. To assess the learning outcome, the study employed a longitudinal experiment design, in which eleven participants practiced two pieces of music in four trials, evenly spaced over a month. Participants were asked to mimic the avatar's gestures as closely as possible when it came to using the bow, including bowing, articulations, and dynamics. The study compared the similarities between the avatar's gestures and those of the participants at the biomechanical level, using motion capture measurements, as well as the smoothness of the participants' movements. Additionally, presence and perceived difficulty were assessed using questionnaires. The results suggest that using a 3D representation of the avatar leads to better gesture resemblance and a higher experience of presence compared to a 2D representation. The 2D representation, however, showed a learning effect, but this was not observed in the 3D condition. The findings suggest that the 3D condition benefits from stereoscopic information that enhances spatial cognition, making it more effective in relation to sensorimotor performance. Overall, the 3D condition had a greater impact on performance than on learning. This work concludes with recommendations for future efforts directed towards AR-based advanced gesture training to address the challenges related to measurement methodology and participants' feedback on the AR application.
RESUMO
Introduction and Objective: With introduction of the da Vinci single-port (SP) system, we evaluated which multiport (MP) robotic skills are naturally transferable to the SP platform. Methods: Three groups of urologists: Group 1 (5 inexperienced in MP and SP), Group 2 (5 experienced in MP without SP experience), and Group 3 (2 experienced in both MP and SP) were recruited to complete a validated urethrovesical anastomosis simulation using MP followed by SP robots. Performance was graded using both GEARS and RACE scales. Subjective cognitive load measurements (Surg-TLX and difficulty ratings [/20] of instrument collisions camera and EndoWrist movement) were collected. Results: GEARS and RACE scores for Groups 1 and 3 were maintained on switching from MP to SP (Group 3 scored significantly higher on both systems). Surg-TLX and difficulty scores were also maintained for both groups on switching from MP and SP except for a significant increase in SP camera movement (+7.2, p = 0.03) in Group 1 compared to Group 3 that maintained low scores on both. Group 2 demonstrated significant lower GEARS (-2.9, p = 0.047) and RACE (-5.1, p = 0.011) scores on SP vs MP. On subanalysis, GEARS subscores for force sensitivity and robotic control (-0.7, p = 0.04; -0.9, p = 0.02) and RACE subscores for needle entry, needle driving, and tissue approximation (-0.9, p = 0.01; -1.0, p = 0.02; -1.0, p < 0.01) significantly decreased. GEARS (depth perception, bimanual dexterity, and efficiency) and RACE subscores (needle positioning and suture placement) were maintained. All participants scored significantly lower in knot tying on the SP robot (-1.0, p = 0.03; -1.2, p = 0.02, respectively). Group 2 reported higher Surg-TLX (+13 pts, p = 0.015) and difficulty ratings on SP vs MP (+11.8, p < 0.01; +13.6, p < 0.01; +14 pts, p < 0.01). Conclusions: The partial skill transference across robots raises the question regarding SP-specific training for urologists proficient in MP. Novices maintained difficulty scores and cognitive load across platforms, suggesting that concurrent SP and MP training may be preferred.
Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Procedimentos Cirúrgicos Robóticos/educação , Competência Clínica , Simulação por Computador , Anastomose Cirúrgica/educaçãoRESUMO
Exercise modes can be categorized based on the skills required (open vs. closed skills), which implicates various demands on cognitive skills, especially executive functions (EFs). Thus, their practice may have varying effects on EFs. There is a lack of detailed analysis of cognitive requirements and suitable classification of sports. It is hypothesized that the amount and type of cognitive requirements of sports lead to small effect sizes when comparing open-skill exercising (OSE) and closed-skill exercising (CSE) athletes. The current meta-analysis evaluates the variances in EFs skills caused by particular sport modes. Four research databases (Web of Science, PubMed, ScienceDirect, PsychINFO) were searched for cross-sectional studies in which the authors compare the performance in EF tasks of OSE and CSE athletes. Risk of bias assessment was conducted using funnel plots and two reviewer selection process (overall and subgroup analysis; low risk of publication and selection bias). A total of 19 studies were included, revealing an overall effect size of Hedge's g = 0.174 (p = 0.157), favoring OSE for the development of EFs. The subgroup analysis revealed the effects for the subdomains of EFs (cognitive flexibility: Hedge's g = 0.210 > inhibitory control: Hedge's g = 0.191 > working memory: Hedge's g = 0.138; p > 0.05), which could be characterized as low to moderate. The hypothesis that studies with the smallest effect sizes compare sport modes with similar cognitive demands was rejected. The paper discusses the differentiation of sports into OSE and CSE and presents new approaches for their categorization.