Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39242333

RESUMO

Group-living animals sleep together, yet most research treats sleep as an individual process. Here, we argue that social interactions during the sleep period contribute in important, but largely overlooked, ways to animal groups' social dynamics, while patterns of social interaction and the structure of social connections within animal groups play important, but poorly understood, roles in shaping sleep behavior. Leveraging field-appropriate methods, such as direct and video-based observation, and increasingly common on-animal motion sensors (e.g., accelerometers), behavioral indicators can be tracked to measure sleep in multiple individuals in a group of animals simultaneously. Sleep proximity networks and sleep timing networks can then be used to investigate the collective dynamics of sleep in wild group-living animals.

2.
Front Neurol ; 3: 100, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22783221

RESUMO

Modern neuroimaging methods may provide unique insights into the mechanism and role of sleep, as well as into particular mechanisms of brain function in general. Many of the recent neuroimaging studies have used concurrent EEG and fMRI, which present unique technical challenges ranging from the difficulty of inducing sleep in the MRI environment to appropriate instrumentation and data processing methods to obtain artifact free data. In addition, the use of EEG-fMRI during sleep leads to unique data interpretation issues, as common approaches developed for the analysis of task-evoked activity do not apply to sleep. Reviewed are a variety of statistical approaches that can be used to characterize brain activity from fMRI data acquired during sleep, with an emphasis on approaches that investigate the presence of correlated activity between brain regions. Each of these approaches has advantages and disadvantages that must be considered in concert with the theoretical questions of interest. Specifically, fundamental theories of sleep control and function should be considered when designing these studies and when choosing the associated statistical approaches. For example, the notion that local brain activity during sleep may be triggered by local, use-dependent activity during wakefulness may be tested by analyzing sleep networks as statistically independent components. Alternatively, the involvement of regions in more global processes such as arousal may be investigated with correlation analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA