Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 212, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877418

RESUMO

BACKGROUND: Long-term treatment with trimethoprim-sulfamethoxazole (SXT) can lead to the formation of small-colony variants (SCVs) of Staphylococcus aureus. However, the mechanism behind SCVs formation remains poorly understood. In this study, we explored the phenotype and omics-based characterization of S. aureus SCVs induced by SXT and shed light on the potential causes of SCV formation. METHODS: Stable SCVs were obtained by continuously treating S. aureus isolates using 12/238 µg/ml of SXT, characterized by growth kinetics, antibiotic susceptibility testing, and auxotrophism test. Subsequently, a pair of representative strains (SCV and its parental strain) were selected for genomic, transcriptomic and metabolomic analysis. RESULTS: Three stable S. aureus SCVs were successfully screened and proven to be homologous to their corresponding parental strains. Phenotypic tests showed that all SCVs were non-classical mechanisms associated with impaired utilization of menadione, heme and thymine, and exhibited slower growth and higher antibiotic minimum inhibitory concentrations (MICs), compared to their corresponding parental strains. Genomic data revealed 15 missense mutations in 13 genes in the representative SCV, which were involved in adhesion, intramolecular phosphate transfer on ribose, transport pathways, and phage-encoded proteins. The combination analysis of transcriptome and metabolome identified 35 overlapping pathways possible associated with the phenotype switching of S. aureus. These pathways mainly included changes in metabolism, such as purine metabolism, pyruvate metabolism, amino acid metabolism, and ABC transporters, which could play a crucial role in promoting SCVs development by affecting nucleic acid synthesis and energy metabolism in bacteria. CONCLUSION: This study provides profound insights into the causes of S. aureus SCV formation induced by SXT. The findings may offer valuable clues for developing new strategies to combat S. aureus SCV infections.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Combinação Trimetoprima e Sulfametoxazol , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Genômica , Metabolômica , Multiômica , Fenótipo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Transcriptoma , Combinação Trimetoprima e Sulfametoxazol/farmacologia
2.
Ann Clin Microbiol Antimicrob ; 23(1): 25, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500139

RESUMO

BACKGROUND: Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS: In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS: In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Complexo Mycobacterium avium/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Etambutol/farmacologia , Etambutol/uso terapêutico
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928191

RESUMO

Staphylococcus aureus bacteremia continues to be associated with significant morbidity and mortality, despite improvements in diagnostics and management. Persistent infections pose a major challenge to clinicians and have been consistently shown to increase the risk of mortality and other infectious complications. S. aureus, while typically not considered an intracellular pathogen, has been proven to utilize an intracellular niche, through several phenotypes including small colony variants, as a means for survival that has been linked to chronic, persistent, and recurrent infections. This intracellular persistence allows for protection from the host immune system and leads to reduced antibiotic efficacy through a variety of mechanisms. These include antimicrobial resistance, tolerance, and/or persistence in S. aureus that contribute to persistent bacteremia. This review will discuss the challenges associated with treating these complicated infections and the various methods that S. aureus uses to persist within the intracellular space.


Assuntos
Antibacterianos , Bacteriemia , Infecções Estafilocócicas , Staphylococcus aureus , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Animais , Farmacorresistência Bacteriana/efeitos dos fármacos
4.
Infect Immun ; 91(7): e0055022, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37347167

RESUMO

Staphylococcus aureus is a public health threat due to the prevalence of antibiotic resistance and the capacity of this organism to infect numerous organs in vertebrates. To generate energy needed to proliferate within tissues, S. aureus transitions between aerobic respiration and fermentation. Fermentation results in a distinct colony morphology called the small-colony variant (SCV) due to decreased membrane potential and ATP production. These traits promote increased resistance to aminoglycoside antibiotics. Consequently, SCVs are associated with persistent infections. We hypothesize that dedicated physiological pathways support fermentative growth of S. aureus that represent potential targets for treatment of resistant infections. Lipoteichoic acid (LTA) is an essential component of the Gram-positive cell envelope that functions to maintain ion homeostasis, resist osmotic stress, and regulate autolytic activity. Previous studies revealed that perturbation of LTA reduces viability of metabolically restricted S. aureus, but the mechanism by which LTA supports S. aureus metabolic versatility is unknown. Though LTA is essential, the enzyme that synthesizes the modified lipid anchor, YpfP, is dispensable. However, ypfP mutants produce altered LTA, leading to elongation of the polymer and decreased cell association. We demonstrate that viability of ypfP mutants is significantly reduced upon environmental and genetic induction of fermentation. This anaerobic viability defect correlates with decreased membrane potential and is restored upon cation supplementation. Additionally, ypfP suppressor mutants exhibiting restored anaerobic viability harbor compensatory mutations in the LTA biosynthetic pathway that restore membrane potential. Overall, these results demonstrate that LTA maintains membrane potential during fermentative proliferation and promotes S. aureus metabolic versatility.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Staphylococcus aureus/metabolismo , Lipopolissacarídeos/metabolismo , Mutação , Ácidos Teicoicos , Resistência Microbiana a Medicamentos
5.
Antimicrob Agents Chemother ; 67(5): e0011823, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37022155

RESUMO

Knowledge on resistance mechanisms toward cefiderocol, a novel siderophore-conjugated cephalosporin antibiotic, is still limited. Although the presence of New-Delhi metallo-ß-lactamase has been demonstrated to facilitate the resistance development toward cefiderocol via siderophore receptor mutations in Enterobacter cloacae and Klebsiella pneumoniae, the impact of metallo-ß-lactamases on facilitating such mutations in Escherichia coli is not yet elucidated. Our study aimed to study the effect of the presence of various ß-lactamases, such as NDM-5, VIM-1, KPC-2, and OXA-48, on the development of cefiderocol resistance in E. coli. To this end, we performed liquid mating to transfer these ß-lactamases onto a defined K-12 E. coli background (J53) and exposed these transconjugants to increasing cefiderocol concentrations in a serial passage experiment. Cefiderocol-resistant isolates were genotyped by whole-genome sequencing to investigate the underlying resistance mechanism. Cefiderocol-resistant isolates emerged only in isolates producing VIM-1 and NDM-5 metallo-ß-lactamase, but not in those producing the serine ß-lactamases KPC-2 and OXA-48. We observed two distinct morphological changes of the J53 E. coli strain exhibiting reduced colony size after insertions of transposable elements in the tonB gene leading to alterations in the TonB binding site and morphological changes consistent with the small-colony variant (SCV) phenotype due to mutations in the hemB and hemH genes. Passaging experiments suggested that these phenotypes were highly plastic. The SCV phenotype is attributed to immune evasion and decreased susceptibility toward antibiotics. The emergence of SCV following cefiderocol exposure may have clinical implications for bacterial clearance and warrants further investigation.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli , Humanos , Sideróforos/farmacologia , Infecções por Enterobacteriaceae/microbiologia , Cefalosporinas/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Klebsiella pneumoniae , Fenótipo , Genômica , Testes de Sensibilidade Microbiana , Cefiderocol
6.
Mol Pharm ; 20(8): 4058-4070, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37471668

RESUMO

There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.


Assuntos
Gálio , Staphylococcus aureus Resistente à Meticilina , Animais , Camundongos , Protoporfirinas/farmacologia , Protoporfirinas/metabolismo , Staphylococcus aureus , Distribuição Tecidual , Antibacterianos/farmacologia , Gálio/farmacologia , Heme/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana
7.
J Infect Chemother ; 29(6): 631-633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996937

RESUMO

A hemin-requiring Proteus vulgaris small-colony variant (SCV) was isolated from a urine culture. This isolate was grown on 5% sheep blood agar but not on modified Drigalski agar. The single nucleotide substitution was found in the SCV of the hemC gene (c.55C > T), and this substitution caused a nonsense mutation (p.Gln19Ter). Porphyrin test results showed that the biosynthesis of δ-aminolevulinic acid stopped up to porphobilinogen and not pre-uroporphyrinogen due to a mutation in the hemC gene. To our knowledge, this is the first report of hemin-requiring P. vulgaris.


Assuntos
Hemina , Porfirinas , Animais , Ovinos , Proteus vulgaris/genética , Ágar , Meios de Cultura
8.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298718

RESUMO

Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus/fisiologia , Osteomielite/patologia , Modelos Animais de Doenças , Inflamação , Infecções Estafilocócicas/microbiologia , Infecção Persistente
9.
Infect Immun ; 90(11): e0041322, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36286497

RESUMO

Staphylococcus aureus is the most prevalent cystic fibrosis (CF) pathogen. During chronic airway infections, S. aureus adaptation to antibiotics includes evolving small colony variants (SCVs). Observational studies correlate SCVs with deteriorating lung function in CF, but it is unclear whether SCVs cause disease progression or if they are markers of intensified treatment. G. E. Bollar, J. D. Keith, A. M. Oden, M. R. Kiedrowski, and S. E. Birket (Infect Immun 90:e00237-22, 2022, https://doi.org/10.1128/iai.00237-22) provide intriguing new experimental evidence that an SCV elicits greater inflammation than its normal colony progenitor strain in CF rats.


Assuntos
Fibrose Cística , Pneumonia , Infecções Estafilocócicas , Ratos , Animais , Staphylococcus aureus , Fibrose Cística/complicações , Infecções Estafilocócicas/complicações , Antibacterianos/farmacologia
10.
Antimicrob Agents Chemother ; 66(7): e0062122, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852364

RESUMO

Pseudomonas aeruginosa is a major pathogen in burn wound infections. We present one of the first reports of small-colony variant (SCV) emergence of P. aeruginosa, taken from a patient under aminoglycosides for a persistent burn wound infection. We confirm the causative role of a single ispA mutation in SCV emergence and increased aminoglycoside resistance. IspA is involved in the synthesis of ubiquinone, providing a possible link between electron transport and SCV formation in P. aeruginosa.


Assuntos
Aminoglicosídeos , Proteínas de Bactérias , Pseudomonas aeruginosa , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Humanos , Mutação , Pseudomonas aeruginosa/genética
11.
J Infect Chemother ; 28(3): 455-458, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34973875

RESUMO

Here, we report a 60-year-old chronically bedridden man with cerebral palsy who had septic shock following a history of urinary tract infection with extended spectrum ß-lactamase-producing and auxotrophic Proteus mirabilis detected on blood and urine cultures. This auxotroph formed small colonies only on the blood agar at 24 h in 5% CO2, but not in the conditions without CO2, and lacked motility and some biochemical activities. The five-year history of stones in the right renal pelvis suggests chronic urinary tract infection with P. mirabilis requiring a 28-day antibiotic treatment. This paper highlights that the CO2-dependent P. mirabilis small colony variant may cause sepsis, probably due to chronic infection in uroliths, which should warrant immediate identification.


Assuntos
Infecções por Proteus , Choque Séptico , Antibacterianos/uso terapêutico , Pessoas Acamadas , Dióxido de Carbono , Humanos , Masculino , Pessoa de Meia-Idade , Infecção Persistente , Infecções por Proteus/tratamento farmacológico , Proteus mirabilis , Choque Séptico/tratamento farmacológico , beta-Lactamases/genética
12.
Proc Natl Acad Sci U S A ; 116(40): 20135-20140, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527262

RESUMO

Staphylococcus aureus small-colony variants (SCVs) are associated with unusually chronic and persistent infections despite active antibiotic treatment. The molecular basis for this clinically important phenomenon is poorly understood, hampered by the instability of the SCV phenotype. Here we investigated the genetic basis for an unstable S. aureus SCV that arose spontaneously while studying rifampicin resistance. This SCV showed no nucleotide differences across its genome compared with a normal-colony variant (NCV) revertant, yet the SCV presented the hallmarks of S. aureus linked to persistent infection: down-regulation of virulence genes and reduced hemolysis and neutrophil chemotaxis, while exhibiting increased survival in blood and ability to invade host cells. Further genome analysis revealed chromosome structural variation uniquely associated with the SCV. These variations included an asymmetric inversion across half of the S. aureus chromosome via recombination between type I restriction modification system (T1RMS) genes, and the activation of a conserved prophage harboring the immune evasion cluster (IEC). Phenotypic reversion to the wild-type-like NCV state correlated with reversal of the chromosomal inversion (CI) and with prophage stabilization. Further analysis of 29 complete S. aureus genomes showed strong signatures of recombination between hsdMS genes, suggesting that analogous CI has repeatedly occurred during S. aureus evolution. Using qPCR and long-read amplicon deep sequencing, we detected subpopulations with T1RMS rearrangements causing CIs and prophage activation across major S. aureus lineages. Here, we have discovered a previously unrecognized and widespread mechanism of reversible genomic instability in S. aureus associated with SCV generation and persistent infections.


Assuntos
Instabilidade Cromossômica , Cromossomos Bacterianos , Fenótipo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Translocação Genética , Inversão Cromossômica , Ordem dos Genes , Genoma Bacteriano , Hemólise , Humanos , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia
13.
Proc Natl Acad Sci U S A ; 116(39): 19665-19674, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31488707

RESUMO

The length and complexity of tuberculosis (TB) therapy, as well as the propensity of Mycobacterium tuberculosis to develop drug resistance, are major barriers to global TB control efforts. M. tuberculosis is known to have the ability to enter into a drug-tolerant state, which may explain many of these impediments to TB treatment. We have identified a mechanism of genetically encoded but rapidly reversible drug tolerance in M. tuberculosis caused by transient frameshift mutations in a homopolymeric tract (HT) of 7 cytosines (7C) in the glpK gene. Inactivating frameshift mutations associated with the 7C HT in glpK produce small colonies that exhibit heritable multidrug increases in minimal inhibitory concentrations and decreases in drug-dependent killing; however, reversion back to a fully drug-susceptible large-colony phenotype occurs rapidly through the introduction of additional insertions or deletions in the same glpK HT region. These reversible frameshift mutations in the 7C HT of M. tuberculosis glpK occur in clinical isolates, accumulate in M. tuberculosis-infected mice with further accumulation during drug treatment, and exhibit a reversible transcriptional profile including induction of dosR and sigH and repression of kstR regulons, similar to that observed in other in vitro models of M. tuberculosis tolerance. These results suggest that GlpK phase variation may contribute to drug tolerance, treatment failure, and relapse in human TB. Drugs effective against phase-variant M. tuberculosis may hasten TB treatment and improve cure rates.


Assuntos
Tolerância a Medicamentos/genética , Glicerol Quinase/genética , Mycobacterium tuberculosis/genética , Animais , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Glicerol Quinase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas/genética , Tuberculose/microbiologia
14.
Microbiology (Reading) ; 167(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186093

RESUMO

Staphylococcus aureus is the most prevalent organism isolated from the airways of people with cystic fibrosis (CF), predominantly early in life. Yet its role in the pathology of lung disease is poorly understood. In mice, and many experiments using cell lines, the bacterium invades cells or interstitium, and forms abscesses. This is at odds with the limited available clinical data: interstitial bacteria are rare in CF biopsies and abscesses are highly unusual. Bacteria instead appear to localize in mucus plugs in the lumens of bronchioles. We show that, in an established ex vivo model of CF infection comprising porcine bronchiolar tissue and synthetic mucus, S. aureus demonstrates clinically significant characteristics including colonization of the airway lumen, with preferential localization as multicellular aggregates in mucus, initiation of a small colony variant phenotype and increased antibiotic tolerance of tissue-associated aggregates. Tissue invasion and abscesses were not observed. Our results may inform ongoing debates relating to clinical responses to S. aureus in people with CF.


Assuntos
Fibrose Cística/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fibrose Cística/patologia , Modelos Animais de Doenças , Humanos , Pulmão/microbiologia , Camundongos , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Suínos
15.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32762803

RESUMO

We identified a small colony variant (SCV) of an amoxicillin/clavulanic acid-resistant derivative of a clinical isolate of Escherichia coli from Malawi, which was selected for in vitro in a subinhibitory concentration of gentamicin. The SCV was auxotrophic for hemin and had impaired biofilm formation compared to the ancestral isolates. A single novel nucleotide polymorphism (SNP) in hemA, which encodes a glutamyl-tRNA reductase that catalyses the initial step of porphyrin biosynthesis leading to the production of haem, was responsible for the SCV phenotype. We showed the SNP in hemA resulted in a significant fitness cost to the isolate, which persisted even in the presence of hemin. However, the phenotype quickly reverted during sequential sub-culturing in liquid growth media. As hemA is not found in mammalian cells, and disruption of the gene results in a significant fitness cost, it represents a potential target for novel drug development specifically for the treatment of catheter-associated urinary tract infections caused by E. coli.


Assuntos
Aldeído Oxirredutases/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Aldeído Oxirredutases/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Gentamicinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Polimorfismo de Nucleotídeo Único
16.
Artigo em Inglês | MEDLINE | ID: mdl-32571828

RESUMO

We have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in Mycobacterium tuberculosis that is caused by a reversible frameshift mutation in the M. tuberculosisorn gene. A frameshift mutation in orn produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type M. tuberculosis However, the same orn mutation in a low-level EMB-resistant double embB-aftA mutant (MIC = 8 µg/ml) produces an SCV with an EMB MIC of 32 µg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these orn-embB-aftA SCV mutants results in rapid reversion of the orn frameshifts, reestablishing the correct orn open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 µg/ml) of the parental strain. Transcriptomic analysis of orn-embB-aftA mutants compared to wild-type M. tuberculosis identified a 27-fold relative increase in the expression of embC, which is a cellular target for EMB. Expression of embC in orn-embB-aftA mutants was also increased 5-fold compared to that in the parental embB-aftA mutant, whereas large-colony orn frameshift revertants of the orn-embB-aftA mutant had levels of embC expression similar to that of the parental embB-aftA strain. Reversible frameshift mutants may contribute to a reversible form of microbiological drug resistance in human tuberculosis.


Assuntos
Farmacorresistência Bacteriana , Etambutol , Mutação da Fase de Leitura , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Etambutol/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Pentosiltransferases/genética
17.
J Infect Chemother ; 26(10): 1066-1069, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32571646

RESUMO

Thymidine-dependent small-colony variant (TD-SCV) of Escherichia coli was isolated from urine of a septuagenarian female patient on hemodialysis suffering from recurrent cystitis. The patient had been treated with frequent administrations of trimethoprim sulfamethoxazole (SXT), every time her cystitis symptoms developed. In the TD-SCV isolate, the deletion was detected in the thyA gene associated with thymidylate synthase. Interestingly, the isolate was found to produce extended-spectrum ß-lactamase (ESBL), and the experiment on conjugational transfer of the resistance trait was successful. By means of genetic analysis, the isolate was found to carry blaCTX-M-1 group. To the best of our knowledge, this is the first report of urinary tract infection caused by the transmissible ESBL-producing TD-SCV of E. coli. MICs of the TD-SCV were obtained only on the Mueller Hinton agar media supplemented with appropriate concentrations of thymidine, which might lead to the difficulty for proper chemotherapy in daily medicine. Furthermore, transmission of the ESBL gene via plasmid should be of concern.


Assuntos
Cistite , Infecções por Escherichia coli , Antibacterianos/uso terapêutico , Cistite/tratamento farmacológico , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Timidina , beta-Lactamases/genética
18.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322853

RESUMO

Mucoidy due to alginate overproduction by the Gram-negative bacterium Pseudomonas aeruginosa facilitates chronic lung infections in patients with cystic fibrosis (CF). We previously reported that disruption in de novo synthesis of pyrimidines resulted in conversion to a nonmucoid small-colony variant (SCV) in the mucoid P. aeruginosa strain (PAO581), which has a truncated anti-sigma factor, MucA25, that cannot sequester sigma factor AlgU (AlgT). Here, we showed that supplementation with the nitrogenous bases uracil or cytosine in growth medium complemented the SCV to normal growth, and nonmucoidy to mucoidy, in these mucA25 mutants. This conversion was associated with an increase in intracellular levels of UMP and UTP suggesting that nucleotide restoration occurred via a salvage pathway. In addition, supplemented pyrimidines caused an increase in activity of the alginate biosynthesis promoter (P algD ), but had no effect on P algU , which controls transcription of algU Cytosolic levels of AlgU were not influenced by uracil supplementation, yet levels of RpoN, a sigma factor that regulates nitrogen metabolism, increased with disruption of pyrimidine synthesis and decreased after supplementation of uracil. This suggested that an elevated level of RpoN in SCV may block alginate biosynthesis. To support this, we observed that overexpressing rpoN resulted in a phenotypic switch to nonmucoidy in PAO581 and in mucoid clinical isolates. Furthermore, transcription of an RpoN-regulated promoter increased in the mutants and decreased after uracil supplementation. These results suggest that the balance of RpoN and AlgU levels may regulate growth from SCV to mucoidy through sigma factor competition for P algDIMPORTANCE Chronic lung infections with P. aeruginosa are the main cause of morbidity and mortality in patients with cystic fibrosis. This bacterium overproduces a capsular polysaccharide called alginate (also known as mucoidy), which aids in bacterial persistence in the lungs and in resistance to therapeutic regimens and host immune responses. The current study explores a previously unknown link between pyrimidine biosynthesis and mucoidy at the level of transcriptional regulation. Identifying/characterizing this link could provide novel targets for the control of bacterial growth and mucoidy. Inhibiting mucoidy may improve antimicrobial efficacy and facilitate host defenses to clear the noncapsulated P. aeruginosa bacteria, leading to improved prognosis for patients with cystic fibrosis.


Assuntos
Alginatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pirimidinas/biossíntese , Fator sigma/metabolismo , Meios de Cultura/química , Perfilação da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
19.
Artigo em Inglês | MEDLINE | ID: mdl-29610201

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti-Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro-generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >105-fold for FC04-100.


Assuntos
Antibacterianos/farmacologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Tomatina/análogos & derivados , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Tomatina/farmacologia
20.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29150501

RESUMO

Many pathogenic bacteria use sophisticated survival strategies to overcome harsh environmental conditions. One strategy is the formation of slow-growing subpopulations termed small colony variants (SCVs). Here we characterize an SCV that spontaneously emerged from an axenic Salmonella enterica serovar Typhimurium water culture. We found that the SCV harbored a frameshift mutation in the glutamine synthetase gene glnA, leading to an ∼90% truncation of the corresponding protein. Glutamine synthetase, a central enzyme in nitrogen assimilation, converts glutamate and ammonia to glutamine. Glutamine is an important nitrogen donor that is required for the synthesis of cellular compounds. The internal glutamine pool serves as an indicator of nitrogen availability in Salmonella In our study, the SCV and a constructed glnA knockout mutant showed reduced growth rates, compared to the wild type. Moreover, the SCV and the glnA mutant displayed attenuated entry into host cells and severely reduced levels of exoproteins, including flagellin and several Salmonella pathogenicity island 1 (SPI-1)-dependent secreted virulence factors. We found that these proteins were also depleted in cell lysates, indicating their diminished synthesis. Accordingly, the SCV and the glnA mutant had severely decreased expression of flagellin genes, several SPI-1 effector genes, and a class 2 motility gene (flgB). However, the expression of a class 1 motility gene (flhD) was not affected. Supplementation with glutamine or genetic reversion of the glnA truncation restored growth, cell entry, gene expression, and protein abundance. In summary, our data show that glnA is essential for the growth of S. enterica and controls important motility- and virulence-related traits in response to glutamine availability.IMPORTANCESalmonella enterica serovar Typhimurium is a significant pathogen causing foodborne infections. Here we describe an S Typhimurium small colony variant (SCV) that spontaneously emerged from a long-term starvation experiment in water. It is important to study SCVs because (i) SCVs may arise spontaneously upon exposure to stresses, including environmental and host defense stresses, (ii) SCVs are slow growing and difficult to eradicate, and (iii) only a few descriptions of S. enterica SCVs are available. We clarify the genetic basis of the SCV described here as a frameshift mutation in the glutamine synthetase gene glnA, leading to glutamine auxotrophy. In Salmonella, internal glutamine limitation serves as a sign of external nitrogen deficiency and is thought to regulate cell growth. In addition to exhibiting impaired growth, the SCV showed reduced host cell entry and reduced expression of SPI-1 virulence and flagellin genes.


Assuntos
Proteínas de Bactérias/genética , Expressão Gênica , Ilhas Genômicas/genética , Glutamato-Amônia Ligase/genética , Interações Hospedeiro-Patógeno , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Proteínas de Bactérias/metabolismo , Flagelina/genética , Flagelina/metabolismo , Glutamato-Amônia Ligase/metabolismo , Fenótipo , Salmonella enterica/metabolismo , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA