Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5585-5592, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662652

RESUMO

Sunlight-to-electricity conversion using solar thermoelectric generators (STEGs) is a proven technology to meet our ever-growing energy demand. However, STEGs are often operated under a vacuum with customized thermoelectric materials to achieve high performance. In this work, the incorporation of plasmonic gold nanoparticle (AuNP) based solar absorbers enabled the efficient operation of STEGs under ambient conditions with commercially available thermoelectric devices. AuNPs enhanced the performance of STEG by ∼9 times, yielding an overall solar-to-electricity conversion efficiency of ∼9.6% under 7.5 W cm-2 solar irradiance at ambient conditions. Plasmonic heat dissipated by AuNPs upon solar irradiation was used as the thermal energy source for STEGs. High light absorptivity, photothermal conversion efficiency (∼95%), and thermal conductivity of AuNPs enabled the efficient generation and transfer of heat to STEGs, with minimal radiative and convective heat losses. The power generated from plasmon-powered STEGs is used to run electrical devices as well as produce green hydrogen via the electrolysis of water.

2.
Adv Mater ; 36(6): e2308346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924272

RESUMO

The development of advanced solar energy technologies, which efficiently convert solar energy to heat and then to electricity, remains a significant challenge in the pursuit of clean energy production. Here, this challenge is addressed by designing a photothermal absorber composed of liquid gallium particles and a natural polyphenol-based coordination ink. The design of this composite takes advantage of the tuneable light absorption properties of the polyphenol inks and can also be applied onto flexible substrates. While the ink utilizes two types of coordination complexes to absorb light at different wavelengths, the liquid gallium particles with high thermal and electrical properties provide enhanced thermoelectric effect. As such, the photothermal composite exhibits a broad-spectrum light absorption and highly efficient solar-to-heat conversion. A thermoelectric generator coated with the photothermal composite exhibits an impressive voltage output of ≈185.3 mV when exposed to 1 Sun illumination, without requiring any optical concentration, which sets a new record for a power density at 345.5 µW cm-2 . This work showcases the synergistic combination of natural compound-based light-absorbing coordination complexes with liquid metals to achieve a strong photothermal effect and their integration into thermoelectric devices with powerful light harvesting capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA