Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 814
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2316477121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38236737

RESUMO

Ni is the second most abundant element in the Earth's core. Yet, its effects on the inner core's structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe's melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe's crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.

2.
Proc Natl Acad Sci U S A ; 120(32): e2221696120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523545

RESUMO

Paleomagnetic records of iron meteorites of the IVA group suggest that their parent body (an inward-solidified metal asteroid) possessed an internal magnetic field. The origin of this magnetism is enigmatic because inward solidification typically leads to light element release from the top of the liquid, which depresses convection and dynamo activity. Here, we propose a possible scenario to help resolve this paradox. The formation of a metal asteroid must involve a disruptive, mantle-stripping collision and the reaccretion of metal fragments. We hypothesize that a small portion of metal fragments may have substantially cooled before being reaccreted. These fragments could have formed a cold, rubble-pile inner core, which extracted heat from the liquid layer, leading to solidification and light element expulsion at the inner core boundary to power a dynamo. In the portions of the inward-growing crust that cooled below the remanence acquisition temperature, the magnetic field could be recorded.

3.
EMBO Rep ; 24(11): e56166, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870275

RESUMO

ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.


Assuntos
Doença de Parkinson , Poli Adenosina Difosfato Ribose , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34987099

RESUMO

The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core.

5.
Small ; : e2405487, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092672

RESUMO

Practical utilization of zinc-iodine (Zn-I2) batteries is hindered by significant challenges, primarily stemming from the polyiodide shuttle effect on the cathode and dendrite growth on the anode. Herein, a feasible redox-active electrolyte has been introduced with tetraethylammonium iodide as an additive that simultaneously addresses the above mentioned challenges via polyiodide solidification on the cathode and the electrostatic shielding effect on the anode. The tetraethylammonium (TEA+) captures water-soluble polyiodide intermediates (I3 -, I5 -), forming a solid complex at the cathode, thereby suppressing capacity loss during charge/discharge. Furthermore, the TEA+ mitigates dendrite growth on the Zn anode via the electrostatic shielding effect, promoting uniform and compact Zn deposition at the anode. Consequently, the Zn||Zn symmetric cell demonstrates superior cycling stability during Zn plating/stripping over 4,200 h at 1 mA cm-2 and 1 mAh cm-2. The Zn||NiNC full-cell exhibits a stable capacity retention of 98.4% after 20 000 cycles (>5 months) with near-unity Coulombic efficiency at 1 A g-1. The study provides novel insights for establishing a new direction for low-cost, sustainable, and long-lifespan Zn-I2 batteries.

6.
Proc Natl Acad Sci U S A ; 118(9)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619094

RESUMO

Nonequilibrium processes during solidification can lead to kinetic stabilization of metastable crystal phases. A general framework for predicting the solidification conditions that lead to metastable-phase growth is developed and applied to a model face-centered cubic (fcc) metal that undergoes phase transitions to the body-centered cubic (bcc) as well as the hexagonal close-packed phases at high temperatures and pressures. Large-scale molecular dynamics simulations of ultrarapid freezing show that bcc nucleates and grows well outside of the region of its thermodynamic stability. An extensive study of crystal-liquid equilibria confirms that at any given pressure, there is a multitude of metastable solid phases that can coexist with the liquid phase. We define for every crystal phase, a solid cluster in liquid (SCL) basin, which contains all solid clusters of that phase coexisting with the liquid. A rigorous methodology is developed that allows for practical calculations of nucleation rates into arbitrary SCL basins from the undercooled melt. It is demonstrated that at large undercoolings, phase selections made during the nucleation stage can be undone by kinetic instabilities amid the growth stage. On these bases, a solidification-kinetic phase diagram is drawn for the model fcc system that delimits the conditions for macroscopic grains of metastable bcc phase to grow from the melt. We conclude with a study of unconventional interfacial kinetics at special interfaces, which can bring about heterogeneous multiphase crystal growth. A first-order interfacial phase transformation accompanied by a growth-mode transition is examined.

7.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33619177

RESUMO

The concomitant mechanical deformation and solidification of melts are relevant to a broad range of phenomena. Examples include the preparation of cotton candy, the atomization of metals, the manufacture of glass fibers, and the formation of elongated structures in volcanic eruptions known as Pele's hair. Usually, solid-like deformations during solidification are neglected as the melt is much more malleable in its initial liquid-like form. Here we demonstrate how elastic deformations in the midst of solidification, i.e., while the melt responds as a very soft solid ([Formula: see text] Pa), can lead to the formation of previously unknown periodic structures. Namely, we generate an array of droplets on a thin layer of liquid elastomer melt coated on the outside of a rotating cylinder through the Rayleigh-Taylor instability. Then, as the melt cures and goes through its gelation point, the rotation speed is increased and the drops stretch into hairs. The ongoing solidification eventually hardens the material, permanently "freezing" these elastic deformations into a patterned solid. Using experiments, simulation, and theory, we demonstrate that the formation of our two-step patterns can be rationalized when combining the tools from fluid mechanics, elasticity, and statistics. Our study therefore provides a framework to analyze multistep pattern formation processes and harness them to assemble complex materials.

8.
Proc Natl Acad Sci U S A ; 118(10)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33674384

RESUMO

Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularities of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in the presence of turbulence. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front and stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occur under different thermal and geometrical conditions.

9.
J Environ Manage ; 354: 120341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364540

RESUMO

Wood and biomass are burned in many industries as a sustainable energy source. The large quantities of fly ash produced must be landfilled, leading to environmental concerns. Precipitator wood fly ash (PFA) and ground granulated blast furnace slag (BFS) have been used in this study to prepare alkali-activated composites to manage and recycle the fly ash. After an essential characterization, the influence of parameters such as PFA and BFS content, alkaline activator content (silica moduli of 0, 0.82, 1.32), curing method, and curing duration on the mechanical, chemical, and microstructural properties of the samples have been studied through compressive strength, density, FTIR, and SEM-EDS investigations. The environmental safety and influence of polycondensation on heavy metal stabilization have been examined through ICP-MS. The results prove that oven and hydrothermal curing obtain the early age strength. Despite the variations of strength with duration and type of curing, the compressive strength of samples after 28 days of curing tends to close values for a constant PFA/BFS ratio, due to which the need for energy-intensive curing methods is addressed. ICP-MS shows that the composites can suitably solidify As, Cd, Ba, Cr, Pb, Mo, Se, Hg, Sr, Cu, and Zn. On the other hand, the composites were almost incapable of stabilizing Co and V. Unlike the case for mechanical properties; higher PFA content favours hazardous metal stabilization through polycondensation.


Assuntos
Metais Pesados , Oligoelementos , Cinza de Carvão/química , Madeira , Álcalis/química , Metais Pesados/química
10.
J Environ Manage ; 366: 121687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986374

RESUMO

Enzyme-induced carbonate precipitation (EICP) is a promising technique for soil reinforcement. To select a suitable calcium source and a suitable solution amount for aeolian sand stabilization using EICP, specimens treated with different solution amounts (1.5, 2, 2.5, 3, and 3.5 L/m2). Surface strength, crust thickness, calcium carbonate content (CCC) and water vapor adsorption tests were performed to evaluate the effect of two calcium sources (calcium acetate and calcium chloride) on aeolian sand solidification. The plant suitability of solidified sand was investigated by the sea buckthorn growth test. The suitable calcium source was then used for the laboratory wind tunnel test and the field test to examine the erosion resistance of solidified sand. The results demonstrated that Ca(CH3COO)2-treated specimens exhibited higher strength than CaCl2-treated specimens at the same EICP solution amount, and the water vapor equilibrium adsorption mass of Ca(CH3COO)2-treated specimens was less, indicating that Ca(CH3COO)2-solidified sand was more effective and had better long-term stability. In addition, plants grown in Ca(CH3COO)2-treated sand had greater seedling emergence percentage and higher average height, which indicated that calcium acetate is a more suitable calcium source for EICP treatment. Furthermore, the surface strength and crust thickness of solidified sand increased with increasing the solution amount. For sand treated with 3 L/m2 of solution, the excessive strength and thickness of the crust made plants growth difficult, and the performance of sand treated with more than 2 L/m2 of solution significantly improved. Thus, the solution amount of 2-3 L/m2 is suggested for engineering applications. The sand solidified using EICP in the field could effectively mitigate wind erosion and facilitate the growth of native plants. Therefore, EICP can be combined with vegetative method to achieve long-term wind erosion control in the future.


Assuntos
Cálcio , Areia , Areia/química , Cálcio/química , Solo/química , Carbonatos/química , Enzimas/metabolismo , Precipitação Química , Carbonato de Cálcio/química
11.
J Environ Manage ; 367: 122088, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39116765

RESUMO

Phosphogypsum (PG) cemented paste backfill (CPB) is a primary non-hazardous method for treating PG. However, using traditional binders like cement increases global carbon emissions and mining operational costs while complicating the reduction of fluoride leaching risks. This study introduces a novel PG-based CPB treatment method using steel slag (SS) and ground granulated blast furnace slag (GGBFS) as binders, calcium oxide as an exciter, with biochar serving as a fluoride-fixing agent. We investigated the effect of biochar addition on the hydration and solidification/stabilization (S/S) of fluoride in SS and GGBFS-PG-based materials (SSPC). The results indicated that the optimal strength and performance for fluoride S/S were achieved with a biochar addition of 0.2 wt%. Compared to the control group without biochar, the strength increased by 54.3%, and F leaching decreased by 39.4% after 28 days of curing for SSPC. The addition of 0.2 wt% biochar facilitated heterogeneous nucleation and acted as a microfiller, enhancing SSPC's properties. However, excessive biochar reduced the compactness of SSPC. Additionally, the distribution of fluoride was strongly correlated with P, Ca, Fe, and Al, suggesting that fluoride S/S is linked to the formation of stable hydration products like fluorapatite, fluorite, and complexes such as [AlF6]3- and [FeF6]3-. These findings offer a promising approach for the safe treatment of PG and the beneficial reuse of solid waste from SS and GGBFS.

12.
J Environ Manage ; 365: 121600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963957

RESUMO

Electrolytic manganese residue (EMR) is known for high concentrations of Mn2+, NH4+, and heavy metals. Failure to undergo benign treatment and landfill disposal would undeniably lead to negative impacts on the quality of the surrounding ecological environment. This study sought to mitigate the latent environmental risks associated with EMR using a cooperative solidification/stabilization (S/S) method involving coal fly ash (CFA). Leveraging leaching toxicity tests, the leaching behavior of pollutants in electrolytic manganese residue-based geopolymer materials (EMRGM) was determined. At the same time, mechanistic insights into S/S processes were explored utilizing characterization techniques such as XRF, XRD, FT-IR, SEM-EDS, and XPS. Those results confirmed significant reductions in the leaching toxicities of Mn2+ and NH4+ to 4.64 µg/L and 0.99 mg/L, respectively, with all other heavy metal ions falling within the permissible limits set by relevant standards. Further analysis shows that most of NH4+ volatilizes into the air as NH3, and a small part is fixed in the EMRGM in the form of struvite; in addition to being oxidized to MnOOH and MnO2, Mn2+ will also be adsorbed and wrapped by silicon-aluminum gel together with other heavy metal elements in the form of ions or precipitation. This research undeniably provides a solid theoretical foundation for the benign treatment and resourceful utilization of EMR and CFA, two prominent industrial solid wastes.


Assuntos
Cinza de Carvão , Manganês , Cinza de Carvão/química , Manganês/química , Metais Pesados/química
13.
J Environ Manage ; 356: 120712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531127

RESUMO

This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management.


Assuntos
Resíduos Radioativos , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Resíduos Perigosos
14.
J Environ Manage ; 366: 121810, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002460

RESUMO

Pb-contaminated soil poses significant environmental and health risks as well as soil stability issues. Research on sandy soils highlights CO2-enhanced reactive MgO as a promising solution for improving the solidification of Pb-contaminated soils. However, carbonation effects can differ markedly between soil types owing to varying soil properties. In this study, we evaluated the effects of CO2-enhanced reactive MgO on the engineering and environmental characteristics of Pb-contaminated red clay and explored its mechanism of carbonation solidification. The results showed that CO2-enhanced reactive MgO increased the strength of Pb-contaminated red clay to over 3 MPa within 1 h, which was approximately 25 times the strength of untreated soil (0.2 MPa) and significantly higher than that of reactive MgO-treated, uncarbonated soil (0.8 MPa). The pH of the carbonated soil (9-10) facilitated Pb2+ immobilization, and the increase over the initial parameter elevated the electrical conductivity value. Moreover, CO2-enhanced reactive MgO reduced the Pb2+ leaching concentration to below 0.1 mg/L, even at high Pb concentrations (10,000 mg/kg). Pb2+ transformed into lead carbonates during the carbonation process, with the hydrated magnesium carbonates forming a dense internal structure. This solidification mechanism included chemical precipitation, physical adsorption, and encapsulation. Notably, the carbonation time should be controlled within 1 h to prevent soil expansion. Together, these findings support the potential of CO2-enhanced reactive MgO for efficient and low-carbon application in the solidification of Pb-contaminated red clay.


Assuntos
Dióxido de Carbono , Argila , Chumbo , Poluentes do Solo , Solo , Dióxido de Carbono/química , Poluentes do Solo/química , Chumbo/química , Argila/química , Solo/química , Óxido de Magnésio/química
15.
J Environ Manage ; 354: 120464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401504

RESUMO

Brick kiln co-treatment is a novel industrial hazardous wastes (IHWs) utilization process. However, the effects of chlorine (Cl) in wastes on heavy metals (HMs) during this process are overlooked. This study investigated the stabilization/solidification (S/S) and volatilization, as well as long and short-term leaching, of HMs in Cl-containing bricks. The results indicated enhanced formations of stable mineral phases (NiFe2O4, Ni2SiO4, Cd3Al2Si3O12, CdSiO3, FeCr2O4, Cr2O3, CuFe2O4, and CuAl2O4) in bricks at a low sintering temperature (800 °C) due to the affinity between Cl and HMs. By comparing HM concentrations before and after sintering in bricks, the study observed that Cl's presence significantly elevated the volatilization rates for Cd and Cu by 30.8% and 14.2%, respectively. In contrast, the effect on volatilization for Ni and Cr was not significant. Additionally, utilizing the NEN 7375 method, the cumulative leaching rates of Ni, Cd, Cr, and Cu over a 64-day experiment under extremely acidic conditions were 0.22%, 7.18%, 0.01%, and 1.46%, respectively. Similarly, higher short-term leaching rates of Cd (4.03%) and Cu (5.73%) than those of Ni (0.94%) and Cr (0.08%) were observed. This finding might be attributed to the lower stability of the Cd and Cu solid phases under acidic environments compared to those of Ni and Cr. Surface wash-off, dissolution, and diffusion were the processes governing HM leaching from bricks. The 10-year projections revealed a minimal release of HMs during future extended leaching, implying the successful S/S of HMs. This study provides a reference for assessing the environmental impacts of brick kiln co-processing of Cl-containing IHWs.


Assuntos
Cloro , Metais Pesados , Cádmio , Resíduos Perigosos/análise , Metais Pesados/análise
16.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792092

RESUMO

The shape of ceramic particles is one of the factors affecting the properties of metal matrix composites. Exploring the mechanism of ceramic particles affecting the cooling mechanical behavior and microstructure of composites provides a simulation basis for the design of high-performance composites. In this study, molecular dynamics methods are used for investigating the microstructure evolution mechanism in Cu/SiC composites containing SiC particles of different shapes during the rapid solidification process and evaluating the mechanical properties after cooling. The results show that the spherical SiC composites demonstrate the highest degree of local ordering after cooling. The more ordered the formation is of face-centered-cubic and hexagonal-close-packed structures, the better the crystallization is of the final composite and the less the number of stacking faults. Finally, the results of uniaxial tensile in three different directions after solidification showed that the composite containing spherical SiC particles demonstrated the best mechanical properties. The findings of this study provide a reference for understanding the preparation of Cu/SiC composites with different shapes of SiC particles as well as their microstructure and mechanical properties and provide a new idea for the experimental and theoretical research of Cu/SiC metal matrix composites.

17.
AAPS PharmSciTech ; 25(5): 117, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806874

RESUMO

Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 µm well. In comparison to γ-CD and ß-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.


Assuntos
Administração Intranasal , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Eugenol , Estruturas Metalorgânicas , Pós , Estruturas Metalorgânicas/química , Pós/química , Humanos , Eugenol/química , Eugenol/administração & dosagem , Eugenol/farmacologia , Administração Intranasal/métodos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , gama-Ciclodextrinas/química , Estabilidade de Medicamentos , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Ciclodextrinas/química , Cavidade Nasal/metabolismo
18.
Small ; 19(29): e2300158, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026682

RESUMO

The non-contact and non-wetting droplet motion isolated from the solid surface has a high degree of freedom and thus can exhibit many peculiar interfacial phenomena. Here, an experimental phenomenon of spinning liquid metal droplets on an ice block is discovered, which adopts the dual solid-liquid phase transition of the liquid metal and the ice. The whole system is somewhat a variant of the classic Leidenfrost effect, which directly uses the latent heat released by the spontaneous solidification of the liquid metal droplet as a heat source to melt the ice and create an intervening lubricant water film. Interestingly, it is found that the droplets on ice become very mobile and undergo rapid spin as the solidification process proceeds. A series of comparative experiments clarify that the circumferential driving force comes from the escaping bubbles as the ice melts. Furthermore, by comparing the motion characteristics of different kinds of liquid metal droplets and solid balls on ice and investigating their physical properties and heat transfer, it is disclosed that the spin effect can be universal for objects of different materials, as long as the two necessary elements of rapid liquid film establishment and gas bubble release can be satisfied simultaneously.

19.
Electrophoresis ; 44(23): 1810-1817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37439369

RESUMO

Electrophoresis of a dielectric fluid droplet with constant surface charge density is investigated theoretically in this study. A pseudo-spectral method based on Chebyshev polynomials is adopted to solve the governing electrokinetic equations. It is found, among other things, that the larger the electrolyte strength in the ambient solution is, the slower the droplet moves in general. This is due to the strong screening effect of the large amount of indifferent counterions in the neighborhood of the droplet, with no reinforcement of potential-determining ions adsorbing to the droplet surface. The droplet comes to a complete halt eventually. Critical points are discovered for highly charged droplets, at which the droplet surface becomes immobile and the interior fluid stops recirculating. The droplet moves like a rigid particle with constant mobility regardless of its viscosity, a situation referred to as the "solidification phenomenon." The deadlock between the spinning motions on the charged droplet surface induced by the electric driving force and the hydrodynamic driving force respectively is responsible for this peculiar phenomenon. This is also observed for a dielectric droplet with constant surface electric potential. We demonstrate here that it occurs in the constant surface charge density situation as well.


Assuntos
Eletricidade , Eletrólitos , Íons , Eletroforese/métodos , Hidrodinâmica
20.
Environ Res ; 231(Pt 3): 116247, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245576

RESUMO

The solidification/stabilisation behaviours of Zn2+ in magnesium potassium phosphate cement (MKPC) have not been thoroughly investigated. Herein, a series of experiments and a detailed density functional theory (DFT) study were conducted to investigate the solidification/stabilisation behaviours of Zn2+ in MKPC. The results showed that the compressive strength of MKPC reduced with the addition of Zn2+ because the formation of MgKPO4·6H2O (the main hydration product in MKPC) was delayed with the addition of Zn2+, as discovered by the crystal characteristics, and because Zn2+ exhibited a lower binding energy in MgKPO4·6H2O compared to Mg2+, as revealed by DFT results. Additonally, Zn2+ had little influence on the structure of MgKPO4·6H2O, and Zn2+ existed in MKPC as the formation of Zn2(OH)PO4, which was decomposed in the range of around 190-350 °C. Moreover, there were a lot of well-crystallised tabular hydration products before the addition of Zn2+, but the matrix was comprised of irregular prism crystals after adding Zn2+. Furthermore, the leaching toxicity of Zn2+ of MKPC was much smaller than the requirements of Chinese and European standards.


Assuntos
Magnésio , Metais Pesados , Potássio , Metais Pesados/química , Teoria da Densidade Funcional , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA