Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(45): 27862-27868, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093199

RESUMO

Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N). A dissolved Fe maximum was observed around 35°N, coincident with high dissolved Pb and Pb isotope ratios matching Asian industrial sources and confirming recent aerosol deposition. Iron-stable isotopes reveal in situ evidence of anthropogenic Fe in seawater, with low δ56Fe (-0.23‰ > δ56Fe > -0.65‰) observed in the region that is most influenced by aerosol deposition. An isotope mass balance suggests that anthropogenic Fe contributes 21-59% of dissolved Fe measured between 35° and 40°N. Thus, anthropogenic aerosol Fe is likely to be an important Fe source to the North Pacific Ocean.


Assuntos
Poluentes Atmosféricos/análise , Combustíveis Fósseis/efeitos adversos , Aerossóis/análise , Ásia , Monitoramento Ambiental/métodos , Ferro/efeitos adversos , Isótopos de Ferro/efeitos adversos , Oceano Pacífico , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Água do Mar/análise , Água do Mar/química , Oligoelementos/efeitos adversos
2.
Proc Natl Acad Sci U S A ; 117(10): 5184-5189, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094170

RESUMO

Wildfire can influence climate directly and indirectly, but little is known about the relationships between wildfire and climate during the Quaternary, especially how wildfire patterns varied over glacial-interglacial cycles. Here, we present a high-resolution soot record from the Chinese Loess Plateau; this is a record of large-scale, high-intensity fires over the past 2.6 My. We observed a unique and distinct glacial-interglacial cyclicity of soot over the entire Quaternary Period synchronous with marine δ18O and dust records, which suggests that ice-volume-modulated aridity controlled wildfire occurrences, soot production, and dust fluxes in central Asia. The high-intensity fires were also found to be anticorrelated with global atmospheric CO2 records over the past eight glacial-interglacial cycles, implying a possible connection between the fires, dust, and climate mediated through the iron cycle. The significance of this hypothetical connection remains to be determined, but the relationships revealed in this study hint at the potential importance of wildfire for the global climate system.

3.
J Food Sci Technol ; 59(9): 3319-3335, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34219805

RESUMO

Abstract: Iron deficiency anemia (IDA) is a global health concern that is affecting all age groups significantly. Among many of the existing methods, the fortification of foods with iron salts is the best and most cost-effective strategy for targeting large-scale populations to provide nutritional security. The fortification of foods with iron salts is a challenging task because most iron complexes (ferrous sulfate, ferrous chloride) used in fortification are highly water-soluble, which impart unacceptable organoleptic changes in food vehicles and also causes gastrointestinal problems. However, insoluble iron salts (ferric pyrophosphate) do not cause unacceptable taste or color in food vehicles but low bioavailable. Nanosized iron salts can overcome these concerns. The particle size of iron salts has been reported to play an important role in the absorption of iron. Reduction in the particle size of iron compounds increases its surface area, which in turn improves its solubility in the gastric juice leading to higher absorption. Nanosized iron compound produces minimal organoleptic changes in food vehicles compared to water-soluble iron complexes. Thus nanosized iron salts find potential applications in food fortification to reduce IDA. This paper focuses on providing a complete review of the various iron salts used in IDA, including their bioavailability, the challenges to food fortification, the effects of nanosized iron salts on IDA, and their applications in food fortification. Graphic abstract: Fortification of foods with water-soluble Fe salts imparts unacceptable organoleptic changes in food vehicle and adverse impact on health. However, insoluble iron salts do not cause unacceptable taste or color in food vehicles but low bioavailable. Using Nano-sized iron compound produces minimal organoleptic changes in food vehicles compared to changes produced by water-soluble iron complexes, improves Fe absorption in the gastrointestinal tract and does not cause any health issues.

4.
Neuropathology ; 40(2): 152-166, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31883180

RESUMO

Previous studies on sporadic amyotrophic lateral sclerosis (SALS) demonstrated iron accumulation in the spinal cord and increased glutamate concentration in the cerebrospinal fluid. To clarify the relationship between the two phenomena, we first performed quantitative and morphological analyses of substances related to iron and glutamate metabolism using spinal cords obtained at autopsy from 12 SALS patients and 12 age-matched control subjects. Soluble iron content determined by the Ferrozine method as well as ferritin (Ft) and glutaminase C (GLS-C) expression levels on Western blots were significantly higher in the SALS group than in the control group, while ferroportin (FPN) levels on Western blots were significantly reduced in the SALS group as compared to the control group. There was no significant difference in aconitase 1 (ACO1) and tumor necrosis factor-alpha (TNFα)-converting enzyme (TACE) levels on Western blots between the two groups. Immunohistochemically, Ft, ACO1, TACE, TNFα, and GLS-C were proven to be selectively expressed in microglia. Immunoreactivities for FPN and hepcidin were localized in neuronal and glial cells. Based on these observations, it is predicted that soluble iron may stimulate microglial glutamate release. To address this issue, cell culture experiments were carried out on a microglial cell line (BV-2). Treatment of BV-2 cells with ferric ammonium citrate (FAC) brought about significant increases in intracellular soluble iron and Ft expression levels and conditioned medium glutamate and TNFα concentrations. Glutamate concentration was also significantly increased in conditioned media of TNFα-treated BV-2 cells. While the FAC-driven increases in glutamate and TNFα release were completely canceled by pretreatment with ACO1 and TACE inhibitors, respectively, the TNFα-driven increase in glutamate release was completely canceled by GLS-C inhibitor pretreatment. Moreover, treatment of BV-2 cells with hepcidin resulted in a significant reduction in FPN expression levels on Western blots of the intracellular total protein extracts. The present results provide in vivo and in vitro evidence that microglial glutamate release in SALS spinal cords is enhanced by intracellular soluble iron accumulation-induced activation of ACO1 and TACE and by increased extracellular TNFα-stimulated GLS-C upregulation, and suggest a positive feedback mechanism to maintain increased intracellular soluble iron levels, involving TNFα, hepcidin, and FPN.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ácido Glutâmico/metabolismo , Ferro/metabolismo , Microglia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medula Espinal/metabolismo , Medula Espinal/patologia
5.
Nitric Oxide ; 91: 42-51, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351146

RESUMO

Water-soluble iron porphyrins, such as FeTPPS (5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron (III)), FeTMPyP (5,10,15,20-tetrakis (N-methyl-4'-pyridyl) porphyrinato iron (III) chloride) and FeTBAP (5,10,15,20-tetrakis (4-benzoic acid) porphyrinato iron (III)), are highly active catalysts for peroxynitrite decomposition and thereby have been suggested as therapeutic agent for inflammatory diseases that implicate the involvement of nitrotyrosine formation. Here, we systemically investigated catalytic properties of FeTPPS, FeTMPyP and FeTBAP on protein nitration in the presence of hydrogen peroxide and nitrite. We showed that FeTPPS, FeTBAP and FeTMPyP all exhibited higher peroxidase activity in compared with hemin. As to protein nitration, the catalytic effect of FeTPPS and FeTBAP are effective in the presence of hydrogen peroxide and nitrite, while negligible BSA nitration was observed in the case of FeTMPyP. Moreover, the underlying mechanism of the oxidation of FeTPPS, FeTBAP and FeTMPyP was further studied. Collectively, our results suggest that, compound I and II species are involved in as the key intermediates in FeTMPyP/H2O2 system as similar as those in FeTPPS/H2O2 and FeTBAP/H2O2 system. As compared to weak antioxidants, TPPS and TBAP, however, TMPyP scavenges oxo-Fe (IV) intermediates of FeTMPyP at a faster rate by significant self-degradation; results in the shortest lifetimes of OFeIV-TMPyP and the lowest catalytic activity on oxidizing tyrosine and nitrite; and therefore, attributes to inactivation of FeTMPyP in protein nitration. In addition, association of FeTMPyP to BSA was found weak, while strong binding of FeTPPS and FeTBAP were observed. The weak binding keeps away of target residue of BSA from the center of FeTMPyP where the RNS is generated, which might be attributed as additional factors to the inactivation of FeTMPyP in protein nitration.


Assuntos
Peróxido de Hidrogênio/química , Metaloporfirinas/química , Nitratos/química , Nitritos/química , Soroalbumina Bovina/metabolismo , Tirosina/química , Animais , Catálise , Bovinos , Peroxidase/química , Ácido Peroxinitroso/metabolismo , Soroalbumina Bovina/química
6.
Sci Total Environ ; 912: 169158, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092217

RESUMO

Anthropogenic emissions are recognized as significant contributors to atmospheric soluble iron (Fe) in recent years, which may affect marine primary productivity, especially in Fe-limited areas. However, the contribution of different emission sources to Fe in marine aerosol has been primarily estimated by modeling approaches. Quantifying anthropogenic Fe based on field measurements remains a great challenge. In this study, online multi-element measurements and Positive Matrix Factorization (PMF) were combined for the first time to quantify sources of atmospheric Fe and soluble Fe in the Northwest Pacific during a cruise in spring 2015. Fe concentration in 624 atmospheric PM2.5 samples measured online was 74.58 ± 90.87 ng/m3. The PMF results showed anthropogenic activities, including industrial coal combustion, biomass burning, and maritime transport, were important in this region, contributing 31.4 % of atmospheric Fe on average. In addition, anthropogenic Fe concentration resolved by PMF was comparable to the simulation results of the CMAQ (Community Multiscale Air Quality) and GEOS-Chem (Goddard Earth Observing System-Chemical transport) models, with better correlation to CMAQ (r = 0.76) than GEOS-Chem (r = 0.26). This study developed a new method to estimate atmospheric soluble Fe, which integrates Fe source apportionment results and Fe solubility from different sources. Soluble Fe concentration was estimated as 3.93 ± 5.14 ng/m3, of which 87.0 % was attributed to anthropogenic emissions. Notably, ship emission alone contributed 27.5 % of soluble Fe, though its contribution to total Fe was only 2.2 %. Finally, the total deposition fluxes of atmospheric Fe (37.11 ± 38.43 µg/m2/day) and soluble Fe (1.85 ± 2.13 µg/m2/day) were estimated. This study developed a new methodology for quantifying contribution of anthropogenic emissions to Fe in marine aerosol, which could greatly help the assessment of impacts of human activities on marine environment.

7.
Ann Rev Mar Sci ; 14: 303-330, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34416126

RESUMO

A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.


Assuntos
Ecossistema , Vento , Aerossóis/análise , Atmosfera , Nutrientes , Oceanos e Mares
8.
Environ Pollut ; 314: 120329, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195196

RESUMO

Water-soluble iron (ws-Fe) in PM2.5 plays a crucial role in biogeochemical cycles and atmospheric chemical processes. The anthropogenic sources of ws-Fe have attracted considerable attention owing to its high solubility. However, few studies have investigated the content of PM2.5 ws-Fe in the urban environment. In the present study, we characterized the spatial distributions of ws-Fe in six Chinese megacities in the winter of 2019. Furthermore, we investigated the speciation of PM2.5 ws-Fe (ws-Fe(II) and ws-Fe(III)), potential sources of ws-Fe, and association between ws-Fe and particle-bound reactive oxygen species (ROS). Higher ws-Fe concentrations were observed in northern cities (Harbin, Beijing, and Xi'an) than in southern cities (Chengdu, Wuhan, and Guangzhou). Moreover, atmospheric ws-Fe concentrations in urban China were several folds higher than those in urban areas of the United States and several orders of magnitude higher than those in remote oceans, indicating that China is a key contributor to global atmospheric ws-Fe. The dominant form of ws-Fe was ws-Fe(III) in Beijing, whereas ws-Fe(II) was more abundant in the other five cities. The concentrations of ws-Fe and ws-Fe(II) concentrations increased with increasing PM2.5 levels in all the six cities, however, we did not observe any consistent pattern of ws-Fe(III) concentration. Biomass burning was a dominant source of ws-Fe in all cities except Beijing. A strong positive correlation was observed between particle-bound ROS content and ws-Fe; this finding is consistent with those of previous studies indicating that ws-Fe in PM2.5 notably influences atmospheric chemical processes and human health.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Cidades , Material Particulado/análise , Poluentes Atmosféricos/análise , Espécies Reativas de Oxigênio/análise , Monitoramento Ambiental , Água , Ferro , Estações do Ano , Pequim , Compostos Ferrosos , China
9.
Plants (Basel) ; 9(11)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202654

RESUMO

Bicarbonate-induced iron (Fe) deficiency (+Bic) is frequently observed in kiwifruit orchards, but more research attention has been paid to direct Fe deficiency (-Fe) in plants, including kiwifruit. Here we compared the differences of kiwifruit plants between -Fe and +Bic in: (1) the traits of 57Fe uptake and translocation within plants, (2) Fe forms in roots, and (3) some acidic ions and metabolites in roots. The concentration of 57Fe derived from nutrient solution (57Fedfs) in roots was less reduced in +Bic than -Fe treatment, despite similar decrease in shoots of both treatments. +Bic treatment increased 57Fedfs distribution in fine roots but decreased it in new leaves and stem, thereby displaying the inhibition of 57Fedfs translocation from roots to shoots and from fine roots to xylem of coarse roots. Moreover, +Bic imposition induced the accumulation of water-soluble Fe and apoplastic Fe in roots. However, the opposite was observed in -Fe-treated plants. Additionally, the cell wall Fe and hemicellulose Fe in roots were less reduced by +Bic than -Fe treatment. +Bic treatment also triggered the reduction in H+ extrusion and the accumulation of NH4+, succinic acid, and some amino acids in roots. These results suggest that, contrary to -Fe, +Bic treatment inhibits Fe translocation to shoots by accumulating water-soluble and apoplastic Fe and slowing down the release of hemicellulose Fe in the cell wall in kiwifruit roots, which may be related to the decreased H+ extrusion and the imbalance between C and N metabolisms.

10.
Biosens Bioelectron ; 139: 111323, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121437

RESUMO

Herein, a novel one step synthesis of multicomponent three dimensional polyacrylic acid (PAA) based conducting hydrogel (CH) incorporated with iron phthalocyanine functionalised graphene nanoplatelets (GPL-FePc) is reported. An amperometric glucose biosensor was fabricated by the immobilization of glucose oxidase (GOx) onto the synthesised PAA-VS-PANI/GPL-FePc-CH (where VS-PANI is vinyl substituted polyaniline). Scanning electron microscopy reveals the presence of three dimensional microporous structure with estimated pore size of 19 µm. The 5-(trifluoromethyl)-2-mercaptopyridine substitution onto FePc enabled the solubility of FePc in water and controls the aggregation of GPL-FePc in the synthesised CH. A sharp peak around 699 nm in UV-visible spectra confirms the presence of incorporated GPL-FePc into CH. Cyclic voltammogram of the synthesised CH biosensor exhibited well defined redox peaks with a ΔEp value of 0.26 V in Fe(CN)63-/4- bench mark solution. The fabricated PAA-VS-PANI/GPL-FePc/GOx-CH amperometric biosensor resulted in remarkable detection sensitivity of 18.11 µA mM-1 cm-2 with an average response time of ∼1 s, linearity from 1 to 20 mM, and low detection limit of 6.4 µM for the determination of glucose.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Glucose/isolamento & purificação , Grafite/química , Nanotubos de Carbono/química , Glucose/química , Glucose Oxidase/química , Humanos , Hidrogéis/química
11.
J Contam Hydrol ; 205: 70-77, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28918966

RESUMO

The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>>TCE>PCE >>nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.


Assuntos
Ferro/química , Peróxidos/química , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água/química , Ácido Edético/química , Etano/análogos & derivados , Etano/química , Água Subterrânea/química , Hidrocarbonetos Clorados/química , Radical Hidroxila/química , Nitrobenzenos/química , Oxidantes/química , Oxirredução , Substâncias Redutoras/química , Sulfatos , Tetracloroetileno/química , Tricloroetileno/química , Purificação da Água/métodos , terc-Butil Álcool
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA