Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37040760

RESUMO

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Histona-Lisina N-Metiltransferase/genética , Fígado/metabolismo , Mosaicismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Cell ; 185(16): 3025-3040.e6, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35882231

RESUMO

Non-allelic recombination between homologous repetitive elements contributes to evolution and human genetic disorders. Here, we combine short- and long-DNA read sequencing of repeat elements with a new bioinformatics pipeline to show that somatic recombination of Alu and L1 elements is widespread in the human genome. Our analysis uncovers tissue-specific non-allelic homologous recombination hallmarks; moreover, we find that centromeres and cancer-associated genes are enriched for retroelements that may act as recombination hotspots. We compare recombination profiles in human-induced pluripotent stem cells and differentiated neurons and find that the neuron-specific recombination of repeat elements accompanies chromatin changes during cell-fate determination. Finally, we report that somatic recombination profiles are altered in Parkinson's and Alzheimer's disease, suggesting a link between retroelement recombination and genomic instability in neurodegeneration. This work highlights a significant contribution of the somatic recombination of repeat elements to genomic diversity in health and disease.


Assuntos
Genoma Humano , Retroelementos , Elementos Alu/genética , Recombinação Homóloga , Humanos , Elementos Nucleotídeos Longos e Dispersos , Sequências Repetitivas de Ácido Nucleico
3.
Am J Hum Genet ; 111(4): 791-804, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503300

RESUMO

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Assuntos
Imunodeficiência Combinada Severa , Lactente , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mutação/genética , Linfócitos T/metabolismo , Mutação de Sentido Incorreto/genética
4.
Annu Rev Physiol ; 84: 113-133, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637327

RESUMO

Contrary to earlier beliefs, every cell in the individual is genetically different due to somatic mutations. Consequently, tissues become a mixture of cells with distinct genomes, a phenomenon termed somatic mosaicism. Recent advances in genome sequencing technology have unveiled possible causes of mutations and how they shape the unique mutational landscape of the tissues. Moreover, the analysis of sequencing data in combination with clinical information has revealed the impacts of somatic mosaicism on disease processes. In this review, we discuss somatic mosaicism in various tissues and its clinical implications for human disease.


Assuntos
Biologia , Mosaicismo , Humanos , Mutação/genética
5.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916065

RESUMO

Somatic mosaicism in a fraction of brain cells causes neurodevelopmental disorders, including childhood intractable epilepsy. However, the threshold for somatic mosaicism leading to brain dysfunction is unknown. In this study, we induced various mosaic burdens in focal cortical dysplasia type II (FCD II) mice, featuring mTOR somatic mosaicism and spontaneous behavioral seizures. The mosaic burdens ranged from approximately 1,000 to 40,000 neurons expressing the mTOR mutant in the somatosensory (SSC) or medial prefrontal (PFC) cortex. Surprisingly, approximately 8,000 to 9,000 neurons expressing the MTOR mutant, which are extrapolated to constitute 0.08-0.09% of total cells or roughly 0.04% of variant allele frequency (VAF) in the mouse hemicortex, were sufficient to trigger epileptic seizures. The mutational burden was correlated with seizure frequency and onset, with a higher tendency for electrographic inter-ictal spikes and beta- and gamma-frequency oscillations in FCD II mice exceeding the threshold. Moreover, mutation-negative FCD II patients in deep sequencing of their bulky brain tissues revealed somatic mosaicism of the mTOR pathway genes as low as 0.07% in resected brain tissues through ultra-deep targeted sequencing (up to 20 million reads). Thus, our study suggests that extremely low levels of somatic mosaicism can contribute to brain dysfunction.

6.
Pediatr Dermatol ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556785

RESUMO

We report two cases with localized vascular malformations clinically resembling the "dominant lesion" seen in capillary malformation-arteriovenous malformation (CM-AVM) syndrome, however, lacking germline RASA1 variants but presenting double somatic RASA1 variants in affected tissue. Both patients presented with localized and superficial high-flow vascular malformations were treated with surgery and laser therapy and showed partial resolution. The study underscores the rarity of somatic RASA1 variants, contributes to understanding the "second-hit" pathophysiology in vascular lesions, and emphasizes the significance of clinical distinctions and genotyping for accurate diagnoses, offering implications for diagnosis, prognosis, and genetic counseling.

7.
Semin Cell Dev Biol ; 114: 68-80, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33229216

RESUMO

Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.


Assuntos
Encéfalo/fisiologia , RNA/genética , Retroelementos/genética , Animais , Humanos
8.
Neurobiol Dis ; 180: 106074, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907520

RESUMO

As cells divide during development, errors in DNA replication and repair lead to somatic mosaicism - a phenomenon in which different cell lineages harbor unique constellations of genetic variants. Over the past decade, somatic variants that disrupt mTOR signaling, protein glycosylation, and other functions during brain development have been linked to cortical malformations and focal epilepsy. More recently, emerging evidence points to a role for Ras pathway mosaicism in epilepsy. The Ras family of proteins is a critical driver of MAPK signaling. Disruption of the Ras pathway is most known for its association with tumorigenesis; however, developmental disorders known as RASopathies commonly have a neurological component that sometimes includes epilepsy, offering evidence for Ras involvement in brain development and epileptogenesis. Brain somatic variants affecting the Ras pathway (e.g., KRAS, PTPN11, BRAF) are now strongly associated with focal epilepsy through genotype-phenotype association studies as well as mechanistic evidence. This review summarizes the Ras pathway and its involvement in epilepsy and neurodevelopmental disorders, focusing on new evidence regarding Ras pathway mosaicism and the potential future clinical implications.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Mosaicismo , Encéfalo , Epilepsia/genética , Transdução de Sinais/genética , Mutação
9.
Neurobiol Dis ; 181: 106104, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972791

RESUMO

Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and stereoelectroencephalography (SEEG) electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Mosaicismo , Epilepsia/genética , Epilepsia/cirurgia , Encéfalo/cirurgia , Mutação , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia
10.
Clin Immunol ; 255: 109733, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572949

RESUMO

High carrier prevalence of STAT3 SH2 domain somatic mutations was recently discovered in CD8+ T cells. We found these low-allele-fraction clones in 26% of donors, without difference between multiple sclerosis (MS) patients and controls. Here we tested whether anti-viral antibodies associate with the carriership of these mutant clones. We compared antibody responses against common viruses in mutation carriers vs. non-carriers. Plasma samples of 152 donors (92 MS patients, 60 controls) were analyzed for antibodies against cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus-6A and parvovirus B19. The mutation carrier status associated with EBV VCA IgG level (p = 0.005) and remained significant after logistic regression (p = 0.036). This association was contributed similarly by MS patients and controls. These results suggest that EBV contributes to the generation or growth of these clones. The pathogenic role of the STAT3 mutant clones in MS is presently unclear, but their detailed characterization warrants further study.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Capsídeo , Domínios de Homologia de src , Antígenos Virais , Anticorpos Antivirais , Imunoglobulina G , Linfócitos T CD8-Positivos , Fator de Transcrição STAT3/genética
11.
J Clin Immunol ; 43(1): 88-100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997928

RESUMO

Chronic granulomatosis disease (CGD) is a rare inborn error of immunity, characterized by phagocytic respiratory outbreak dysfunction. Mutations causing CGD occur in CYBB on the X chromosome and in the autosomal genes CYBA, NCF1, NCF2, NCF4, RAC2, and CYBC1. Nevertheless, some patients are clinically diagnosed with CGD, due to abnormal respiratory outbursts, while the pathogenic gene mutation is unidentified. Here, we report a patient with CGD who first presented with Bacillus Calmette-Guérin disease and had recurrent pneumonia. He was diagnosed with CGD by nitro blue tetrazolium and respiratory burst tests. Detailed assessment of neutrophil activity revealed that patient neutrophils were almost entirely nonfunctional. Sanger sequencing detected a 6-kb insertion of a LINE-1 transposable element in the third intron of CYBB, leading to abnormal splicing and pseudoexon insertion, as well as introduction of a premature termination codon, resulting in predicted protein truncation. Clonal analysis demonstrated that the patient had somatic mosaicism, and the phagocytes were almost all variant CYBB, while the mosaicism rate of PBMC was about 65%. Finally, deep RNA sequencing and gp91phox expression analysis confirmed the pathogenicity of the mutation. In conclusion, we demonstrate that insertion of a LINE-1 transposon in a CYBB intron was responsible for CGD in our patient. Intron LINE-1 transposon element insertion should be examined in CGD patients without any known disease-causing gene mutation, in addition to identification of new genes.


Assuntos
Doença Granulomatosa Crônica , Masculino , Humanos , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Íntrons/genética , Mosaicismo , Elementos Nucleotídeos Longos e Dispersos , Leucócitos Mononucleares/metabolismo , Mutação/genética , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo
12.
J Clin Immunol ; 43(8): 1992-1996, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37644277

RESUMO

Autoimmune lymphoproliferative syndrome (ALPS) is a disease of lymphocyte homeostasis caused by FAS-mediated apoptotic pathway dysfunction and is characterized by non-malignant lymphoproliferation with an increased number of TCRαß+CD4-CD8- double-negative T cells (αßDNTs). Conversely, RAS-associated leukoproliferative disease (RALD), which is caused by gain-of-functional somatic variants in KRAS or NRAS, is considered a group of diseases with a similar course. Herein, we present a 7-year-old Japanese female of RALD harboring NRAS variant that aggressively progressed to juvenile myelomonocytic leukemia (JMML) with increased αßDNTs. She eventually underwent hematopoietic cell transplantation due to acute respiratory distress which was caused by pulmonary infiltration of JMML blasts. In general, αßDNTs have been remarkably increased in ALPS; however, FAS pathway gene abnormalities were not observed in this case. This case with RALD had repeated shock/pre-shock episodes as the condition progressed. This shock was thought to be caused by the presence of a high number of αßDNTs. The αßDNTs observed in this case revealed high CCR4, CCR6, and CD45RO expressions, which were similar to Th17. These increased Th17-like αßDNTs have triggered the inflammation, resulting in the pathogenesis of shock, because Th17 secretes pro-inflammatory cytokines such as interleukin (IL)-17A and granulocyte-macrophage colony-stimulating factor. The presence of IL-17A-secreting αßDNTs has been reported in systemic lupus erythematosus (SLE) and Sjögren's syndrome. The present case is complicated with SLE, suggesting the involvement of Th17-like αßDNTs in the disease pathogenesis. Examining the characteristics of αßDNTs in RALD, JMML, and ALPS may reveal the pathologies in these cases.


Assuntos
Síndrome Linfoproliferativa Autoimune , Lúpus Eritematoso Sistêmico , Transtornos Linfoproliferativos , Feminino , Humanos , Criança , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Linfócitos T CD4-Positivos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
13.
Genet Med ; 25(3): 100348, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571464

RESUMO

PURPOSE: RAS genes (HRAS, KRAS, and NRAS) are commonly found to be mutated in cancers, and activating RAS variants are also found in disorders of somatic mosaicism (DoSM). A survey of the mutational spectrum of RAS variants in DoSM has not been performed. METHODS: A total of 938 individuals with suspected DoSM underwent high-sensitivity clinical next-generation sequencing-based testing. We investigated the mutational spectrum and genotype-phenotype associations of mosaic RAS variants. RESULTS: In this article, we present a series of individuals with DoSM with RAS variants. Classic hotspots, including Gly12, Gly13, and Gln61 constituted the majority of RAS variants observed in DoSM. Furthermore, we present 12 individuals with HRAS and KRAS in-frame duplication/insertion (dup/ins) variants in the switch II domain. Among the 18.3% individuals with RAS in-frame dup/ins variants, clinical findings were mainly associated with vascular malformations. Hotspots were associated with a broad phenotypic spectrum, including vascular tumors, vascular malformations, nevoid proliferations, segmental overgrowth, digital anomalies, and combinations of these. The median age at testing was higher and the variant allelic fraction was lower in individuals with in-frame dup/ins variants than those in individuals with mosaic RAS hotspots. CONCLUSION: Our work provides insight into the allelic and clinical heterogeneity of mosaic RAS variants in nonmalignant conditions.


Assuntos
Mosaicismo , Malformações Vasculares , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Alelos , Malformações Vasculares/genética
14.
Neuropathol Appl Neurobiol ; 49(5): e12937, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740653

RESUMO

OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Neocórtex , Humanos , Epilepsia do Lobo Temporal/patologia , Neocórtex/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Hipocampo/patologia , Epilepsias Parciais/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/patologia , Epilepsia/patologia , Esclerose/patologia , Imageamento por Ressonância Magnética
15.
Clin Genet ; 103(6): 709-713, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896710

RESUMO

Epidermal nevus syndrome (ENS) comprises a heterogeneous group of neurocutaneous syndromes associated with the presence of epidermal nevi and variable extracutaneous manifestations. Postzygotic activating HRAS pathogenic variants were previously identified in nevus sebaceous (NS), keratinocytic epidermal nevus (KEN), and different ENS, including Schimmelpenning-Feuerstein-Mims and cutaneous-skeletal-hypophosphatasia syndrome (CSHS). Skeletal involvement in HRAS-related ENS ranges from localized bone dysplasia in association with KEN to fractures and limb deformities in CSHS. We describe the first association of HRAS-related ENS and auricular atresia, thereby expanding the disease spectrum with first branchial arch defects if affected by the mosaic variant. In addition, this report illustrates the first concurrent presence of verrucous EN, NS, and nevus comedonicus (NC), indicating the possibility of mosaic HRAS variation as an underlying cause of NC. Overall, this report extends the pleiotropy of conditions associated with mosaic pathogenic variants in HRAS affecting ectodermal and mesodermal progenitor cells.


Assuntos
Nevo , Neoplasias Cutâneas , Humanos , Síndrome , Região Branquial/patologia , Nevo/patologia , Proteínas Proto-Oncogênicas p21(ras)
16.
Am J Med Genet A ; 191(6): 1518-1524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924216

RESUMO

Arteriovenous malformations (AVMs) are vascular lesions in which an overgrowth of blood vessels of varying sizes develops with one or more direct connections between the arterial and venous circulation. We performed a retrospective review of a cohort of 54 patients with AVMs referred to our clinical genomic laboratory for high-depth next-generation sequencing (NGS) panel of Disorders of Somatic Mosaicism (DoSM). Thirty-seven of 54 patients were female (68.5%). Among the 54 cases, 37 (68.5%) cases had pathogenic and/or likely pathogenic (P/LP) variants identified, two cases (3.7%) had variants of uncertain clinical significance, and the remaining 15 cases (27.8%) had negative results. MAP2K1 variants were found in 12 cases, followed by eight cases with KRAS variants and seven with TEK variants, and the remainder being identified in several other genes on the panel. Among the 37 positive cases, 32 cases had somatic alterations only; the remaining five cases had at least one germline P/LP variant, including four cases with PTEN and one with RASA1. Of note, two cases had the unexpected co-existence of two P/LP variants. In summary, this study illustrated the molecular diagnostic yield (68.5%) of this cohort of patients with a clinical indication of AVMs by our high-depth DoSM NGS panel.


Assuntos
Malformações Arteriovenosas , Humanos , Feminino , Masculino , Mutação , Malformações Arteriovenosas/diagnóstico , Malformações Arteriovenosas/genética , Mutação em Linhagem Germinativa , Aberrações Cromossômicas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteína p120 Ativadora de GTPase/genética
17.
Am J Med Genet A ; 191(5): 1442-1446, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695285

RESUMO

Capillary malformations are slow-flow vascular malformations that affect the microcirculation including capillaries and post capillary venules and can be associated with growth differences. Specifically, the association of capillary malformations with undergrowth is a vastly understudied vascular syndrome with few reports of genetic causes including PIK3CA, GNAQ, and GNA11. Recently, a somatic pathogenic variant in AKT3 was identified in one child with a cutaneous vascular syndrome similar to cutis marmorata telangiectatica congenita, undergrowth, and no neurodevelopmental features. Here, we present a male patient with a capillary malformation and undergrowth due to a somatic pathogenic variant in AKT3 to confirm this association. It is essential to consider that mosaic pathogenic variants in AKT3 can cause a wide spectrum of disease. There is a need for future studies focusing on capillary malformations with undergrowth to understand the underlying mechanism.


Assuntos
Livedo Reticular , Telangiectasia , Malformações Vasculares , Criança , Humanos , Masculino , Capilares/anormalidades , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Telangiectasia/genética , Síndrome , Mutação , Proteínas Proto-Oncogênicas c-akt/genética
18.
Epilepsia ; 64(12): 3143-3154, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750451

RESUMO

Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.


Assuntos
Epilepsia , Variação Genética , Humanos , Variação Genética/genética , Epilepsia/diagnóstico , Epilepsia/genética , Exoma , Sequenciamento do Exoma , Mapeamento Cromossômico
19.
Hum Mutat ; 43(12): 1852-1855, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054331

RESUMO

RASopathies are disorders caused by germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. These syndromes share features of developmental delay, facial dysmorphisms, and defects in various organs, as well as cancer predisposition. Somatic mutations of the same pathway are one of the primary causes of cancer. It is thought that germline cancer-causing mutations would be embryonic lethal, as a more severe phenotype was shown in Drosophila and zebrafish embryos with cancer MAP2K1 mutations than in those with RASopathy mutations. Here we report the case of a patient with RASopathy caused by a cancer-associated MAP2K1 p.Phe53Leu mutation. The postzygotic mosaic nature of this mutation could explain the patient's survival.


Assuntos
Displasia Ectodérmica , Cardiopatias Congênitas , Síndromes de Imunodeficiência , Neoplasias , Animais , Humanos , Peixe-Zebra/genética , Insuficiência de Crescimento/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Fácies , Cardiopatias Congênitas/genética , Mutação , MAP Quinase Quinase 1/genética
20.
Cytogenet Genome Res ; 162(11-12): 625-631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37245502

RESUMO

Transient abnormal myelopoiesis (TAM) is a unique neonatal leukemoid reaction caused by a pathognomonic GATA1 mutation in conjunction with the gene dosage effect of trisomy 21, which is either of germline or somatic origin. We encountered a 48,XYY,+21 phenotypically normal neonate with Down syndrome who developed TAM due to cryptic germline mosaicism. Quantification of the mosaic ratio was complicated by an overestimation bias of hyperproliferating TAM within the germline component. To establish a workflow for such a clinical scenario, we analyzed the cytogenetic findings of neonates with TAM associated with somatic or low-level germline mosaicism. We showed that multistep diagnostic procedures (i.e., paired cytogenetic analyses of peripheral blood specimens in culture with or without phytohemagglutinin; serial cytogenetic studies of more than one tissue, such as the buccal membrane; and complementary DNA-based GATA1 mutation screening) can verify the specificity of cytogenetic testing for phenotypically normal neonates with TAM suspected of mosaicism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA