Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Sci Technol ; 58(36): 16175-16185, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39118588

RESUMO

Carbon materials are regarded as a promising adsorbent for the adsorption of volatile organic compounds (VOCs). However, their adsorption behaviors are usually compromised at ambient conditions, attributed to the competitive VOCs adsorption with water vapor. In this study, we demonstrated that the selectivity for toluene than water of carbon can be effectively enhanced by introducing more sp2-carbon with two-dimensional nanosheets stacked. The multilayer carbon nanosheets enriched with sp2-carbon (CNS-MCA) exhibit a 151° H2O-contact angle, indicating hydrophobicity. Dynamic adsorption behaviors revealed that CNS-MCA retain 71% of their toluene adsorption capacity (91 mg/g) even at 60% relative humidity. Density functional theory (DFT) calculations, static adsorption studies, in situ Raman spectroscopy, and time-resolved in situ nuclear magnetic resonance (NMR) spectroscopy collectively indicate that toluene exhibits enhanced adsorption and selectivity due to π-π* interactions between its aromatic rings and the sp2-carbon. Conversely, water adsorption is attenuated, attributed to the reduced availability of surface-exposed hydrogen bonds associated with sp2-carbon and the inherent hydrophobic nature of multilayer graphene. This study extends a novel solution for the enhancement of VOCs adsorption under humid conditions.


Assuntos
Carbono , Interações Hidrofóbicas e Hidrofílicas , Tolueno , Adsorção , Tolueno/química , Carbono/química , Compostos Orgânicos Voláteis/química , Umidade , Nanoestruturas/química
2.
Angew Chem Int Ed Engl ; : e202412334, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046189

RESUMO

Covalent organic frameworks (COFs) hold great promise for rechargeable batteries. However, the synthesis of COFs with abundant active sites, excellent stability, and increased conductivity remains a challenge. Here, chemically stable fully sp2 carbon-conjugated COFs (sp2c-COFs) with multiple active sites are designed by the polymerization of benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde) (BTT) and s-indacene-1,3,5,7(2H,6H)-tetrone (ICTO) (denoted as BTT-ICTO). The morphology and structure of the COF are precisely regulated from "butterfly-shaped" to "cable-like" through an in situ controllable growth strategy, significantly promoting the exposure and utilization of active sites. When the unique "cable-like" BTT-ICTO@CNT is employed as lithium-ion batteries (LIBs) cathode, it exhibits exceptional capacity (396 mAh g-1 at 0.1 A g-1 with 97.9 % active sites utilization rate), superb rate capacity (227 mAh g-1 at 5.0 A g-1), and excellent cycling performance (184 mAh g-1 over 8000 cycles at 2.0 A g-1 with 0.00365 % decay rate per cycle). The lithium storage mechanism of BTT-ICTO is exhaustively revealed by in situ Fourier transform infrared, in situ Raman, and density functional theory calculations. This work provides in-depth insights into fully sp2c-COFs with multiple active sites for high-performance LIBs.

3.
Small ; 19(38): e2302456, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37196416

RESUMO

Fully conjugated covalent organic frameworks (COFs) can exhibit great potential in semiconductor photocatalysis. But their syntheses remain elusive due to the low reversibility of vinylene linkage. Herein, by tuning the amount of base and temperature, a novel triazine-based sp2  carbon-conjugated COF (TA-sp2 c-COF) is successfully constructed over Cs2 CO3 . Besides, the influence of modulating factors on the chemical and optoelectronic properties of TA-sp2 c-COF is thoroughly investigated. TA-sp2 c-COF adopts an eclipsed AA stacking structure with uniform micropores (1.4 nm). The blue light photocatalysis of the highly crystalline TA-sp2 c-COF is established for the selective oxidative coupling of amines with oxygen, and the predominant role of superoxide is identified in forming imines. This work foretells that meticulous modulation of reaction conditions is the key to constructing sp2  carbon-conjugated COFs toward solar photocatalysis.

4.
Small ; 19(36): e2302334, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127856

RESUMO

The surging demand for environmental-friendly and safe electrochemical energy storage systems has driven the development of aqueous zinc (Zn)-ion batteries (ZIBs). However, metallic Zn anodes suffer from severe dendrite growth and large volume change, resulting in a limited lifetime for aqueous ZIB applications. Here, it is shown that 3D mesoporous carbon (MC) with controlled carbon and defect configurations can function as a highly reversible and dendrite-free Zn host, enabling the stable operation of aqueous ZIBs. The MC host has a structure-controlled architecture that contains optimal sp2 -carbon and defect sites, which results in an improved initial nucleation energy barrier and promotes uniform Zn deposition. As a consequence, the MC host shows outstanding Zn plating/stripping performance over 1000 cycles at 2 mA cm-2 and over 250 cycles at 6 mA cm-2 in asymmetric cells. Density functional theory calculations further reveal the role of the defective sp2 -carbon surface in Zn adsorption energy. Moreover, a full cell based on Zn@MC900 anode and V2 O5 cathode exhibits remarkable rate performance and cycling stability over 3500 cycles. These results establish a structure-mechanism-performance relationship of the carbon host as a highly reversible Zn anode for the reliable operation of ZIBs.

5.
Small ; 19(27): e2208118, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965021

RESUMO

The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1  h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.

6.
Small ; 19(35): e2207972, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37129557

RESUMO

sp2 carbon-conjugated covalent organic framework (sp2 c-COF) featured with high π-conjugation, high chemical stabilities, and designable chemical structures, are thus promising for applications including adsorption and separation, optoelectronic devices, and catalysis. For the most of these applications, large-area and continuous films are required. However, due to the needs of harsh conditions in the formation of CC bonds, classical interfacial methodologies are challenged in the synthesis of sp2 c-COFs films. Herein, a novel and robust interfacial method namely copper-surface-mediated Knoevenagel polycondensation (Cu-SMKP), is shown for scalable synthesis of sp2 c-COF films on various Cu substrates. Using this approach, large-area and continuous sp2 c-COF films could be prepared on various complicated Cu surfaces with thickness from tens to hundreds of nanometers. The resultant sp2 c-COF films on Cu substrate could be used directly as functional electrode for extraction of uranium from spiked seawater, which gives an exceptionally uptake capacity of 2475 mg g-1 . These results delineate significant synthetic advances in sp2 c-COF films and implemented them as functional electrodes for uranyl capture.

7.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220248, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211030

RESUMO

We explore the mechanical and electronic response of sp2-based two-dimensional materials under in-plane compression employing first principles density functional theory-based calculations. Taking two carbon-based graphynes (α-graphyne and γ-graphyne) as example systems, we show that the structures of both two-dimensional materials are susceptible to out-of-plane buckling, which emerges for modest in-plane biaxial compression (1.5-2%). Out-of-plane buckling is found to be more energetically stable than in-plane scaling/distortion and significantly lowers the in-plane stiffness of both graphenes. The buckling also gives rise to in-plane auxetic behaviour in both two-dimensional materials. Under compression, the induced in-plane distortions and out-of-plane buckling also lead to modulations of the electronic band gap. Our work highlights the possibility of using in-plane compression to induce out-of-plane buckling in, otherwise planar, sp2-based two-dimensional materials (e.g. graphynes, graphdiynes). We suggest that controllable compression-induced buckling in planar two-dimensional materials (as opposed to two-dimensional materials, which are buckled due to sp3 hybridization) could provide a route to a new 'buckletronics' approach for tuning the mechanical and electronic properties of sp2-based systems. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

8.
Part Fibre Toxicol ; 20(1): 33, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605240

RESUMO

BACKGROUND: Nanodiamonds (NDs) have gained a rapidly growing interest in biomedical applications; however, little is known regarding their biokinetics owing to difficulties in measurements and limited synthesis/purification technologies. In this study, we investigated the distribution kinetics of detonation-synthesized NDs in mice via intravenous injection to evaluate the parameters that determine the behavior of the particles. We prepared two distinctive NDs that controlled the sp3/sp2 carbon ratio and particle size by coating them with serum proteins. The four control samples were intravenously injected into mice, and tissue distribution and clearance were evaluated at 30 min and 1, 7, and 28 days post-injection. RESULTS: The sp3/sp2 carbon ratio showed no correlation with the organ distribution of the NDs. However, hydrodynamic size showed an excellent correlation with organ distribution levels: a negative correlation in the liver and positive correlations in the spleen and lungs. Furthermore, the deposition levels of NDs in the lung suggest that particles smaller than 300 nm could avoid lung deposition. Finally, a similar organ distribution pattern was observed in mice injected with carbon black nanoparticles controlled hydrodynamic size. CONCLUSIONS: In conclusion, the tissue distribution of NDs is modulated not by the sp3/sp2 carbon ratio but by the hydrodynamic size, which can provide helpful information for targeting the tissue of NDs. Furthermore, the organ distribution pattern of the NDs may not be specific to NDs but also can apply to other nanoparticles, such as carbon black.


Assuntos
Hidrodinâmica , Nanodiamantes , Animais , Camundongos , Injeções Intravenosas , Cinética , Fuligem , Distribuição Tecidual , Carbono
9.
Small ; 18(14): e2107750, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35224845

RESUMO

It is still a great challenge to explore hydrogen evolution reaction (HER) electrocatalysts with both lower overpotential and higher stability in acidic electrolytes. In this work, an efficient HER catalyst, Ru@COF-1, is prepared by complexation of triazine-cored sp2 carbon-conjugated covalent organic frameworks (COFs) with ruthenium ion. Ru@COF-1 possesses high crystallinity and porosity, which are beneficial for electrocatalysis. The large specific surface area and regular porous channels of Ru@COF-1 facilitate full contact between reactants and catalytic sites. The nitrogen atoms of triazines are protonated in the acidic media, which greatly improve the conductivity of Ru@COF-1. This synergistic effect makes the overpotential of Ru@COF-1 about 200 mV at 10 mA cm-2 , which is lower than other reported COFs-based electrocatalysts. Moreover, Ru@COF-1 exhibits exceptionally electrocatalytic durability in the acidic electrolytes. It is particularly stable and remains highly active after 1000 cyclic voltammetry cycles. Density functional theory calculations demonstrate that tetracoordinated Ru-N2 Cl2 moieties are the major contributors to the outstanding HER performance. This work provides a new idea for developing protonated HER electrocatalysts in acidic media.

10.
Chemistry ; 28(20): e202104502, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35157327

RESUMO

The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2 -carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C-C single bond formation.

11.
Angew Chem Int Ed Engl ; 61(42): e202208919, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36028615

RESUMO

Two-dimensional covalent organic frameworks (2D-COFs) have emerged as attractive platforms for solar-to-chemical energy conversion. In this study, we have implemented a gradient heating strategy to synthesize a sp2 -carbon-linked triazine-based COF, COF-JLU100, exhibiting high crystallinity, large surface area, good durability and carrier mobility for solar-driven photocatalytic hydrogen evolution. The Pt-doped COF-JLU100 demonstrated a high hydrogen evolution rate of over 100 000 µmol g-1 h-1 for water splitting under visible-light illumination (λ>420 nm). Experimental and theoretical studies corroborate that the cyano-vinylene segments in COF-JLU100 extend the π-delocalization and enable fast charge transfer and separation rates as well as good dispersion in water. Moreover, COF-JLU100 can be prepared by low-cost and easily available monomers and has excellent stability, which is desirable for practical solar-driven hydrogen production.

12.
J Comput Chem ; 41(15): 1416-1420, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32196699

RESUMO

In the fragment molecular orbital (FMO) method, a given molecular system is usually fragmented at sp3 carbon atoms. However, fragmentation at different sites sometimes becomes necessary. Hence, we propose fragmentation at sp2 carbon atoms in the FMO method. Projection operators are constructed using sp2 local orbitals. To maintain practical accuracy, it is essential to consider the three-body effect. In order to suppress the corresponding increase of computational cost, we propose approximate models considering local trimers. Numerical verification shows that the present models are as accurate as or better than the standard FMO2 method in total energy with fragmentation at sp3 carbon atoms.

13.
Angew Chem Int Ed Engl ; 58(3): 849-853, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30461145

RESUMO

A two-dimensional (2D) sp2 -carbon-linked conjugated polymer framework (2D CCP-HATN) has a nitrogen-doped skeleton, a periodical dual-pore structure and high chemical stability. The polymer backbone consists of hexaazatrinaphthalene (HATN) and cyanovinylene units linked entirely by carbon-carbon double bonds. Profiting from the shape-persistent framework of 2D CCP-HATN integrated with the electrochemical redox-active HATN and the robust sp2 carbon-carbon linkage, 2D CCP-HATN hybridized with carbon nanotubes shows a high capacity of 116 mA h g-1 , with high utilization of its redox-active sites and superb cycling stability (91 % after 1000 cycles) and rate capability (82 %, 1.0 A g-1 vs. 0.1 A g-1 ) as an organic cathode material for lithium-ion batteries.

14.
Chemistry ; 22(30): 10620-6, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27346677

RESUMO

Herein, mesoporous sodium vanadium phosphate nanoparticles with highly sp(2) -coordinated carbon coatings (meso-Na3 V2 (PO4 )3 /C) were successfully synthesized as efficient cathode material for rechargeable sodium-ion batteries by using ascorbic acid as both the reductant and carbon source, followed by calcination at 750 °C in an argon atmosphere. Their crystalline structure, morphology, surface area, chemical composition, carbon nature and amount were systematically explored. Following electrochemical measurements, the resultant meso-Na3 V2 (PO4 )3 /C not only delivered good reversible capacity (98 mAh g(-1) at 0.1 A g(-1) ) and superior rate capability (63 mAh g(-1) at 1 A g(-1) ) but also exhibited comparable cycling performance (capacity retention: ≈74 % at 450 cycles at 0.4 A g(-1) ). Moreover, the symmetrical sodium-ion full cell with excellent reversibility and cycling stability was also achieved (capacity retention: 92.2 % at 0.1 A g(-1) with 99.5 % coulombic efficiency after 100 cycles). These attributes are ascribed to the distinctive mesostructure for facile sodium-ion insertion/extraction and their continuous sp(2) -coordinated carbon coatings, which facilitate electronic conduction.

15.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837276

RESUMO

Diamond is an important material for electrical and electronic devices. Because the diamond is in contact with the metal in these applications, it becomes necessary to study the metal-diamond interaction and the structure of the interface, in particular, at elevated temperatures. In this work, we study the interaction of the (100) and (111) surfaces of a synthetic diamond single crystal with spattered titanium and molybdenum films. Atomic force microscopy reveals a uniform coating of titanium and the formation of flattened molybdenum nanoparticles. A thin titanium film is completely oxidized upon contact with air and passes from the oxidized state to the carbide state upon annealing in an ultrahigh vacuum at 800 °C. Molybdenum interacts with the (111) diamond surface already at 500 °C, which leads to the carbidization of its nanoparticles and catalytic graphitization of the diamond surface. This process is much slower on the (100) diamond surface; sp2-hybridized carbon is formed on the diamond and the top of molybdenum carbide nanoparticles, only when the annealing temperature is raised to 800 °C. The conductivity of the resulting sample is improved when compared to the Ti-coated diamond substrates and the Mo-coated (111) substrate annealed at 800 °C. The presented results could be useful for the development of graphene-on-diamond electronics.

16.
Materials (Basel) ; 16(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770119

RESUMO

Amorphous carbon (AC) is present in the bulk and on the surface of nanostructured carbon materials (NCMs) and exerts a significant effect on the physical, chemical and mechanical properties of NCMs. Thus, the determination of AC in NCMs is extremely important for controlling the properties of a wide range of materials. In this work, a comparative study of the effect of heat treatment on the structure and content of amorphous carbon in deposited AC film, nanodiamonds, carbon black and multiwalled carbon nanotube samples was carried out by TEM, XPS, XRD and Raman spectroscopy. It has been established that the use of the 7-peak model for fitting the Raman spectra makes it possible not only to isolate the contribution of the modes of amorphous carbon but also to improve the accuracy of fitting the fundamental G and D2 (D) modes and obtain a satisfactory convergence between XPS and Raman spectroscopy. The use of this model for fitting the Raman spectra of deposited AC film, ND, CB and MWCNT films demonstrated its validity and effectiveness for investigating the amorphous carbon in various carbon systems and its applicability in comparative studies of other NCMs.

17.
Nanomaterials (Basel) ; 13(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37887912

RESUMO

In this work, the hysteresis of elastomer composites suitable for tire compounds was reduced by using CB functionalized with pyrrole compounds containing sulfur-based functional groups reactive with the elastomer chains. CB was functionalized with bio-based pyrrole compounds: 2-(2,5-dimethyl-1H-pyrrol-1-yl)ethane-1-thiol (SHP) and 1,2-bis(2-(2,5-dimethyl-1H-pyr-rol-1-yl)ethyl)disulfide (SSP), bearing an -SH and an -SS- functional group, respectively. SHP and SSP were synthesized via a one-pot two-step synthesis, with yields higher than 70%, starting from biosourced chemicals as follows: 2,5-hexanedione from 2,5-dimethylfuran, cysteine and cysteamine. The functionalization of CB was carried out by mixing the CB with PyC and heating, with quantitative yields ranging from 92 to 97%. Thus, the whole functionalization process was characterized by a high carbon efficiency. The formation of the covalent bond between SHP, SSP and CB, in line with the prior art of such a functionalization technology, was proven by means of extraction and TGA analyses. The reactivity of the sulfur-based functional groups with unsaturated polymer chains was demonstrated by using squalene as the model compound. Poly(styrene-co-butadiene) from solution anionic polymerization and poly(1,4-cis-isoprene) from Hevea Brasiliensis were the elastomers employed for the preparation of the composites, which were crosslinked with a sulfur-based system. Pristine CB was partially replaced with CB/SHP (33%) and CB/SSP (33% and 66%). The PyC resulted in better curing efficiency, an increase in the dynamic rigidity of approximately 20% and a reduction in the hysteresis of approximately 10% at 70 °C, as well as similar/better ultimate tensile properties. The best results were achieved with a 66% replacement of CB with CB/SSP. This new family of reactive carbon blacks paves the way for a new generation of 'green tires', reinforced by a CB reactive with the polymer chains, which provides high mechanical properties and low rolling resistance. Such a reactive CB eliminates the use of silica, and thus the ethanol emission resulting from the condensation of silane is used as a coupling agent. In addition, CB-based tires are characterized by a higher mileage, at a moment in which the reduction in tire wear has become a primary concern.

18.
J Hazard Mater ; 448: 130866, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753911

RESUMO

A new strategy for nereistoxin-related insecticide, cartap, detection in foodstuff and the environment is of great importance due to its poisoning of human beings through direct exposure or via biomagnification. Herein, a highly planar conjugated sp2 carbon-connected COF (F-Csp2-TT) was synthesized via Knoevenagel condensation reaction followed by the post-modification to develop a new platform for cartap visual detection in agricultural and food samples. The synergistic effect of highly planar conjugation and dense functional groups in the opened framework endowed F-Csp2-TT with a high-precision luminescence sensing performance. Meanwhile, the exquisitely designed F-Csp2-TT presented robust chemical stability, radiation stability, and good reproducibility. Benefiting from these advantages, high-precision luminescent F-Csp2-TT achieves a low detection limit of 0.51 µg/L to cartap over the range of 1-300 µg/L (R2=0.9938), and the recoveries percentage in food products was calculated as 95.90%- 119.3%. More significantly, the smartphone-based high-precision platform by F-Csp2-TT was established and successfully applied to portable monitoring of cartap and water content. Therefore, our work revealed the enormous potential of Csp2-connected COF, which opened a new situation for insecticide detection.


Assuntos
Inseticidas , Estruturas Metalorgânicas , Humanos , Inseticidas/análise , Estruturas Metalorgânicas/química , Luminescência , Reprodutibilidade dos Testes
19.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364573

RESUMO

The progress in the practical use of glassy carbon materials has led to a considerable interest in understanding the nature of their physical properties. The electrophysical properties are among the most demanded properties. However, obtaining such materials is associated with expensive and dirty processes. In nature, in the course of geological processes, disordered sp2 carbon substances were formed, the structure of which is in many respects similar to the structure of glassy carbon and black carbon, and the electrical properties are distinguished by a high-energy storage potential and a high efficiency of shielding electromagnetic radiation. Given the huge natural reserves of such carbon (for example, in the shungite rocks of Karelia) and the relative cheapness and ease of producing materials from it, the study of potential technological applications and the disclosure of some unique electrophysical properties are of considerable interest. In this paper, we present an overview of recent studies on the structure, electrophysical properties, and technological applications of natural disordered sp2 carbon with the addition of novel authors' results.

20.
ACS Appl Mater Interfaces ; 13(11): 13087-13096, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705096

RESUMO

N-doped carbon materials represent a type of metal-free catalyst for diverse organic synthetic reactions. However, single N-doped carbon materials perform insufficiently in the selective oxidation reaction of C-H bond compared with metal catalysts or multielement co-doped materials. There are a few reports on the application of three-dimensional (3D) carbon materials in such a reaction. Besides, the relationship between the well-developed porous structures, heteroatom doping, and their catalytic performance is unclear. In this study, 3D porous N-doped graphene aerogel catalysts with high activity and selectivity for the C-H bond oxidation under mild reaction conditions have been synthesized through a two-step method. Systematic studies on the dosage of N sources, pyrolysis temperature, and their influences on the catalytic performances have been evolved. Moreover, solid evidence of the synergistic effect of sp2 C atoms adjacent to the N atoms and porous structure promoting the performance has been provided in this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA