Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MethodsX ; 13: 102879, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39206058

RESUMO

Understanding the mechanical behavior of heterogeneous materials is becoming increasingly crucial across various fields, including aerospace engineering, composite materials development, geology, and biomechanics. While substantial literature exists on this topic, conventional methods often rely on commercial software packages. This study presents a framework for computed tomography (CT) scan-based finite element (FE) analysis of such materials using open-source software in most of the workflow. Our work focuses on three key aspects:1.Mesh generation that incorporates spatially varying mechanical properties and well-defined boundary conditions.2.Validation of the FE results through comparison with digital image correlation (DIC) system measurements.3.Open-source software utilization throughout the entire process, making it more accessible and cost-effective.This work aims to demonstrate the effectiveness of this framework for analyzing heterogeneous materials in various fields, offering a more accessible and affordable approach.

2.
Insects ; 12(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375590

RESUMO

Exploitation of heterogenous distributions of Deroceras reticulatum, in arable fields by targeting molluscicide applications toward areas with higher slug densities, relies on these patches displaying sufficient spatio-temporal stability. Regular sampling of slug activity/distribution was undertaken using 1 ha rectangular grids of 100 refuge traps established in 22 commercial arable field crops. Activity varied significantly between the three years of the study, and the degree of aggregation (Taylor's Power Law) was higher in fields with higher mean trap catches. Hot spot analysis detected statistically significant spatial clusters in all fields, and in 162 of the 167 individual assessment visits. The five assessment visits in which no clusters were detected coincided with low slug activity (≤0.07 per trap). Generalized Linear Models showed significant spatial stability of patches in 11 fields, with non-significant fields also characterized by low slug activity (≤1.2 per trap). Mantel's permutation tests revealed a high degree of correlation between location of individual patches between sampling dates. It was concluded that patches of higher slug density were spatio-temporally stable, but detection using surface refuge traps (which rely on slug activity on the soil surface) was less reliable when adverse environmental conditions resulted in slugs retreating into the upper soil horizons.

3.
Insects ; 9(1)2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29495513

RESUMO

Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA