Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066614

RESUMO

Mitochondria are essential organelles with specialized functions, which play crucial roles in energy production, calcium homeostasis, and programmed cell death. In oocytes, mitochondrial populations are inherited maternally and are vital for developmental competence. Dysfunction in mitochondrial quality control mechanisms can lead to reproductive failure. Due to their central role in oocyte and embryo development, mitochondria have been investigated as potential diagnostic and therapeutic targets in assisted reproduction. Pharmacological agents that target mitochondrial function and show promise in improving assisted reproduction outcomes include antioxidant coenzyme Q10 and mitoquinone, mammalian target of rapamycin signaling pathway inhibitor rapamycin, and nicotinamide mononucleotide. Mitochondrial replacement therapies (MRTs) offer solutions for infertility and mitochondrial disorders. Autologous germline mitochondrial energy transfer initially showed promise but failed to demonstrate significant benefits in clinical trials. Maternal spindle transfer (MST) and pronuclear transfer hold potential for preventing mitochondrial disease transmission and improving oocyte quality. Clinical trials of MST have shown promising outcomes, but larger studies are needed to confirm safety and efficacy. However, ethical and legislative challenges complicate the widespread implementation of MRTs.

2.
Hum Reprod ; 38(6): 1135-1150, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029914

RESUMO

STUDY QUESTION: Can spindle transfer (ST) overcome inferior embryonic development of in vitro matured ovarian tissue oocytes (OTO-IVM) originating from testosterone-treated transgender men? SUMMARY ANSWER: ST shows some potential to overcome the embryo developmental arrest observed in OTO-IVM oocytes from transgender men. WHAT IS KNOWN ALREADY: OTO-IVM is being applied as a complementary approach to increase the number of oocytes/embryos available for fertility preservation during ovarian tissue cryopreservation in cancer patients. OTO-IVM has also been proposed for transgender men, although the potential of their oocytes remains poorly investigated. Currently, only one study has examined the ability of OTO-IVM oocytes originating from transgender men to support embryo development, and that study has shown that they exhibit poor potential. STUDY DESIGN, SIZE, DURATION: Both ovaries from 18 transgender men undergoing oophorectomy were collected for the purposes of this study, from November 2020 to September 2022. The patients did not wish to cryopreserve their tissue for fertility preservation and donated their ovaries for research. All patients were having testosterone treatment at the time of oophorectomy and some of them were also having menses inhibition treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sibling ovaries were collected in either cold or warm medium, to identify the most optimal collection temperature. Cumulus oocyte complexes (COCs) from each condition were isolated from the ovarian tissue and matured in vitro for 48 h. The quality of OTO-IVM oocytes was assessed by calcium pattern releasing ability, embryo developmental competence following ICSI, and staining for mitochondrial membrane potential. In vitro matured metaphase I (MI) oocytes, germinal vesicle (GV) oocytes, and in vivo matured oocytes with aggregates of smooth endoplasmic reticulum (SERa) were donated from ovarian stimulated women undergoing infertility treatment and these served as Control oocytes for the study groups. ST was applied to overcome poor oocyte quality. Specifically, enucleated mature Control oocytes served as cytoplasmic recipients of the OTO-IVM spindles from the transgender men. Embryos derived from the different groups were scored and analysed by shallow whole genome sequencing for copy number variations (CNVs). MAIN RESULTS AND THE ROLE OF CHANCE: In total, 331 COCs were collected in the cold condition (OTO-Cold) and 282 were collected in the warm condition (OTO-Warm) from transgender men. The maturation rate was close to 54% for OTO-Cold and 57% for OTO-Warm oocytes. Control oocytes showed a calcium releasing ability of 2.30 AU (n = 39), significantly higher than OTO-Cold (1.47 AU, P = 0.046) oocytes (n = 33) and OTO-Warm (1.03 AU, P = 0.036) oocytes (n = 31); both values of calcium release were similar between the two collection temperatures. Mitochondrial membrane potential did not reveal major differences between Control, OTO-Warm, and OTO-Cold oocytes (P = 0.417). Following ICSI, 59/70 (84.2%) of Control oocytes were fertilized, which was significantly higher compared to 19/47 (40.4%) of OTO-Cold (P < 0.01) and 24/48 (50%) of OTO-Warm oocytes (P < 0.01). In total, 15/59 (25.4%) blastocysts were formed on Day 5 in the Control group, significantly higher than 0/19 (0%) from the OTO-Cold (P = 0.014) and 1/24 (4.1%) in OTO-Warm oocytes (P = 0.026). Application of ST rescued the poor embryo development, by increasing the Day 5 blastocyst rate from 0% (0/19) to 20.6% (6/29) (P = 0.034), similar to that in the ICSI-Control group (25.4%, 15/59). A normal genetic profile was observed in 72.7% (8/11) of OTO-Cold, 72.7% (8/11) of OTO-Warm and 64.7% (11/17) of Control Day 3-Day 5 embryos. After ST was applied for OTO-IVM oocytes, 41.1% (7/17) of the embryos displayed normal genetic patterns, compared to 57.1% (4/7) among ST-Control Day 3-Day 5 embryos. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Due to the limited access to human oocytes and ovarian tissue, our results should be interpreted with some caution, as only a limited number of human oocytes and embryos could be investigated. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study, clearly indicate that OTO-IVM oocytes originating from transgender patients are of inferior quality, which questions their use for fertility preservation. The poor quality is likely to be related to cytoplasmic factors, supported by the increased blastocyst numbers following application of ST. Future research on OTO-IVM from transgender men should focus on the cytoplasmic content of oocytes or supplementation of media with factors that promote cytoplasmic maturation. A more detailed study on the effect of the length of testosterone treatment is also currently missing for more concrete guidelines and guidance on the fertility options of transgender men. Furthermore, our study suggests a potentially beneficial role of experimental ST in overcoming poor embryo development related to cytoplasmic quality. STUDY FUNDING/COMPETING INTEREST(S): A.C. is a holder of FWO grants (1S80220N and 1S80222N). A.B. is a holder of an FWO grant (1298722N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) and 2018000504 (GOA030-18 BOF) funding. B.H. has additional grants from FWO-Vlaanderen (Flemish Fund for Scientific Research, G051516N and G1507816N) and Ghent University Special Research Fund (Bijzonder Onderzoeksfonds, BOF funding (BOF/STA/202109/005)), and has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Pessoas Transgênero , Gravidez , Masculino , Humanos , Feminino , Técnicas de Maturação in Vitro de Oócitos/métodos , Cálcio , Variações do Número de Cópias de DNA , Oócitos , Desenvolvimento Embrionário , Testosterona/farmacologia
3.
Hum Reprod ; 38(11): 2137-2153, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37766497

RESUMO

STUDY QUESTION: Is the chromosome copy number of the trophectoderm (TE) of a human reconstituted embryos after spindle transfer (ST) representative of the inner cell mass (ICM)? SUMMARY ANSWER: Single-cell multi-omics sequencing revealed that ST blastocysts have a higher proportion of cell lineages exhibiting intermediate mosaicism than conventional ICSI blastocysts, and that the TE of ST blastocysts does not represent the chromosome copy number of ICM. WHAT IS KNOWN ALREADY: Preimplantation genetic testing for aneuploidy (PGT-A) assumes that TE biopsies are representative of the ICM, but the TE and ICM originate from different cell lineages, and concordance between TE and ICM is not well-studied, especially in ST embryos. STUDY DESIGN, SIZE, DURATION: We recruited 30 infertile women who received treatment at our clinic and obtained 45 usable blastocysts (22 from conventional ICSI and 23 reconstituted embryos after ST). We performed single-cell multi-omics sequencing on all blastocysts to predict and verify copy number variations (CNVs) in each cell. We determined the chromosome copy number of each embryo by analysing the proportion of abnormal cells in each blastocyst. We used the Bland-Altman concordance and the Kappa test to evaluate the concordance between TE and ICM in the both groups. PARTICIPANTS/MATERIALS, SETTING, METHODS: The study was conducted at a public tertiary hospital in China, where all the embryo operations, including oocytes retrieval, ST, and ICSI, were performed in the embryo laboratory. We utilized single-cell multi-omics sequencing technology at the Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, to analyse the blastocysts. Transcriptome sequencing was used to predict the CNV of each cell through bioinformatics analysis, and the results were validated using the DNA methylation library of each cell to confirm chromosomal normalcy. We conducted statistical analysis and graphical plotting using R 4.2.1, SPSS 27, and GraphPad Prism 9.3. MAIN RESULTS AND THE ROLE OF CHANCE: Mean age of the volunteers, the blastocyst morphology, and the developmental ratewere similar in ST and ICSI groups. The blastocysts in the ST group had some additional chromosomal types that were prone to variations beyond those enriched in the blastocysts of the ICSI group. Finally, both Bland-Altman concordance test and kappa concordancetest showed good chromosomal concordance between TE and ICM in the ICSI blastocysts (kappa = 0.659, P < 0.05), but not in ST blastocysts (P = 1.000), suggesting that the TE in reconstituted embryos is not representative of ICM. Gene functional annotation (GO and KEGG analyses) suggests that there may be new or additional pathways for CNV generation in ST embryos compared to ICSI embryos. LIMITATIONS, REASONS FOR CAUTION: This study was mainly limited by the small sample size and the limitations of single-cell multi-omics sequencing technology. To select eligible single cells, some cells of the embryos were eliminated or not labelled, resulting in a loss of information about them. The findings of this study are innovative and exploratory. A larger sample size of human embryos (especially ST embryos) and more accurate molecular genetics techniques for detecting CNV in single cells are needed to validate our results. WIDER IMPLICATIONS OF THE FINDINGS: Our study justifies the routine clinical use of PGT-A in ICSI blastocysts, as we found that the TE is a good substitute for ICM in predicting chromosomal abnormalities. While PGT-A is not entirely accurate, our data demonstrate good clinical feasibility. This trial was able to provide correct genetic counselling to patients regarding the reliability of PGT-A. Regarding ST blastocysts, the increased mosaicism rate and the inability of the TE to represent the chromosomal copy number of the ICM are both biological characteristics that differentiate them from ICSI blastocysts. Currently, ST is not used clinically on a large scale to produce blastocysts. However, if ST becomes more widely used in the future, our study will be the first to demonstrate that the use of PGT-A in ST blastocysts may not be as accurate as PGT-A for ICSI blastocysts. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the National Key R&D Program of China (2018YFA0107601) and the National Key R&D Program of China (2018YFC1003003). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Infertilidade Feminina , Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Variações do Número de Cópias de DNA , Diagnóstico Pré-Implantação/métodos , Reprodutibilidade dos Testes , Infertilidade Feminina/metabolismo , Multiômica , Blastocisto/metabolismo , Testes Genéticos/métodos , Cromossomos , Aneuploidia , Mosaicismo
4.
J Assist Reprod Genet ; 39(3): 609-618, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064435

RESUMO

PURPOSE: Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS: Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS: For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION: Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.


Assuntos
Infertilidade , Doenças Mitocondriais , DNA Mitocondrial/genética , Fertilização , Fertilização in vitro/métodos , Humanos , Infertilidade/genética , Infertilidade/terapia , Oócitos , Injeções de Esperma Intracitoplásmicas
5.
Bioethics ; 35(7): 615-622, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184299

RESUMO

Few discussions of the ethics of mitochondrial 'replacement' techniques have drawn significant ethical distinctions between the two approaches now legal in the U.K. However, Anthony Wrigley, Stephen Wilkinson and John Appleby have together argued that under some circumstances pronuclear transfer (PNT) may be in better ethical standing than maternal spindle transfer (MST). They base their conclusion on what they allege to be different implications of the techniques with respect to non-identity considerations, which they ground on a version of origin essentialism. I raise a series of problems for their argument, which have cautionary implications for invocations of origin essentialism that go beyond specialized debates regarding MST and PNT. I argue that (i) origin essentialism is a fragile foundation for non-identity considerations; (ii) gametic essentialism, which Wrigley et al. believe licenses their claims, is more questionable than origin essentialism; (iii) gametic essentialism does not straightforwardly justify their conclusion; and (iv) their conclusion in fact relies on an especially dubious position that we can call chromosomal origin essentialism. No good reasons have yet been supplied to distinguish PNT from MST on ethical grounds, and one should be wary of basing claims with practical impact on fragile foundations relating to origin essentialism.


Assuntos
Terapia de Substituição Mitocondrial , Humanos , Mitocôndrias/genética , Princípios Morais
6.
Hum Reprod ; 35(7): 1562-1577, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613230

RESUMO

STUDY QUESTION: Can pronuclear transfer (PNT) or maternal spindle transfer (ST) be applied to overcome poor embryo development associated with advanced maternal age or early embryo arrest in a mouse model? SUMMARY ANSWER: Both PNT and ST may have the potential to restore embryonic developmental potential in a mouse model of reproductive ageing and embryonic developmental arrest. WHAT IS KNOWN ALREADY: Germline nuclear transfer (NT) techniques, such as PNT and ST, are currently being applied in humans to prevent the transmission of mitochondrial diseases. Yet, there is also growing interest in the translational use of NT for treating infertility and improving IVF outcomes. Nevertheless, direct scientific evidence to support such applications is currently lacking. Moreover, it remains unclear which infertility indications may benefit from these novel assisted reproductive technologies. STUDY DESIGN, SIZE, DURATION: We applied two mouse models to investigate the potential of germline NT for overcoming infertility. Firstly, we used a model of female reproductive ageing (B6D2F1 mice, n = 155), with ages ranging from 6 to 8 weeks (young), 56 (aged) to 70 weeks (very-aged), corresponding to a maternal age of <30, ∼36 and ∼45 years in humans, respectively. Secondly, we used NZB/OlaHsd female mice (7-14 weeks, n = 107), as a model of early embryo arrest. This mouse strain exhibits a high degree of two-cell block. Metaphase II (MII) oocytes and zygotes were retrieved following superovulation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian reserve was assessed by histological analysis in the reproductive-aged mice. Mitochondrial membrane potential (△Ψm) was measured by JC-1 staining in MII oocytes, while spindle-chromosomal morphology was examined by confocal microscopy. Reciprocal ST and PNT were performed by transferring the meiotic spindle or pronuclei (PN) from unfertilised or fertilised oocytes (after ICSI) to enucleated oocytes or zygotes between aged or very-aged and young mice. Similarly, NT was also conducted between NZB/OlaHsd (embryo arrest) and B6D2F1 (non-arrest control) mice. Finally, the effect of cytoplasmic transfer (CT) was examined by injecting a small volume (∼5%) of cytoplasm from the oocytes/zygotes of young (B6D2F1) mice to the oocytes/zygotes of aged or very-aged mice or embryo-arrest mice. Overall, embryonic developmental rates of the reconstituted PNT (n = 572), ST (n = 633) and CT (n = 336) embryos were assessed to evaluate the efficiency of these techniques. Finally, chromosomal profiles of individual NT-generated blastocysts were evaluated using next generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to young mice, the ovarian reserve in aged and very-aged mice was severely diminished, reflected by a lower number of ovarian follicles and a reduced number of ovulated oocytes (P < 0.001). Furthermore, we reveal that the average △Ψm in both aged and very-aged mouse oocytes was significantly reduced compared to young mouse oocytes (P < 0.001). In contrast, the average △Ψm in ST-reconstructed oocytes (very-aged spindle and young cytoplast) was improved in comparison to very-aged mouse oocytes (P < 0.001). In addition, MII oocytes from aged and very-aged mice exhibited a higher rate of abnormalities in spindle assembly (P < 0.05), and significantly lower fertilisation (60.7% and 45.3%) and blastocyst formation rates (51.4% and 38.5%) following ICSI compared to young mouse oocytes (89.7% and 87.3%) (P < 0.001). Remarkably, PNT from zygotes obtained from aged or very-aged mice to young counterparts significantly improved blastocyst formation rates (74.6% and 69.2%, respectively) (P < 0.05). Similarly, both fertilisation and blastocyst rates were significantly increased after ST between aged and young mice followed by ICSI (P < 0.05). However, we observed no improvement in embryo development rates when performing ST from very-aged to young mouse oocytes following ICSI (P > 0.05). In the second series of experiments, we primarily confirmed that the majority (61.8%) of in vivo zygotes obtained from NZB/OlaHsd mice displayed two-cell block during in vitro culture, coinciding with a significantly reduced blastocyst formation rate compared to the B6D2F1 mice (13.5% vs. 90.7%; P < 0.001). Notably, following the transfer of PN from the embryo-arrest (NZB/OlaHsd) zygotes to enucleated non-arrest (B6D2F1) counterparts, most reconstructed zygotes developed beyond the two-cell stage, leading to a significantly increased blastocyst formation rate (89.7%) (P < 0.001). Similar findings were obtained after implementing ST between NZB/OlaHsd and B6D2F1 mice, followed by ICSI. Conversely, the use of CT did not improve embryo development in reproductive-age mice nor in the embryo-arrest mouse model (P > 0.05). Surprisingly, chromosomal analysis revealed that euploidy rates in PNT and ST blastocysts generated following the transfer of very-aged PN to young cytoplasts and very-aged spindles to young cytoplasts were comparable to ICSI controls (with young mouse oocytes). A high euploidy rate was also observed in the blastocysts obtained from either PNT or ST between young mice. Conversely, the transfer of young PN and young spindles into very-aged cytoplasts led to a higher rate of chromosomal abnormalities in both PNT and ST blastocysts. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The limited number of blastocysts analysed warrants careful interpretation. Furthermore, our observations should be cautiously extrapolated to humans given the inherent differences between mice and women in regards to various biological processes, including centrosome inheritance. The findings suggest that ST or PNT procedures may be able to avoid aneuploidies generated during embryo development, but they are not likely to correct aneuploidies already present in some aged MII oocytes. WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first study to evaluate the potential of PNT and ST in the context of advanced maternal age and embryonic developmental arrest in a mouse model. Our data suggest that PNT, and to a lesser extent ST, may represent a novel reproductive strategy to restore embryo development for these indications. STUDY FUNDING/COMPETING INTEREST(S): M.T. is supported by grants from the China Scholarship Council (CSC) (Grant no. 201506160059) and the Special Research Fund from Ghent University (Bijzonder Onderzoeksfonds, BOF) (Grant no. 01SC2916 and no. 01SC9518). This research is also supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051017N, G051516N and G1507816N). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Animais , Blastocisto , China , Feminino , Idade Materna , Camundongos , Oócitos
7.
Reprod Med Biol ; 19(4): 357-364, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33071637

RESUMO

PURPOSE: Assisted reproductive technology (ART) is a widely applied fertility treatment. However, the developmental competence of aged oocytes from women of a late reproductive age is seriously reduced and the aged oocytes often fail in fertilization even when ART is used. To resolve this problem, we examined usefulness of a new method "the metaphase II spindle transfer (MESI)" as ART using mouse oocytes. METHODS: This work was composed of two experiments. First, 24 hours after collection, embryos from oocytes (1-day-old oocytes, called postovulatory-aged oocytes), were observed, after intracytoplasmic sperm injection (ICSI), and it was found that they were not able to reach the blastocyst stage. Next, the metaphase II chromosome-spindle complexes from 1-day-old oocytes were injected into cytoplasts from oocytes just collected, using piezo pulses to generate reconstructed oocytes. This procedure was named metaphase II spindle injection (MESI). RESULTS: After ICSI, embryos from the reconstructed oocytes (32/105), which contained the genes of 1-day-old oocytes, were able to develop into the blastocyst stage. The fragmentation rate after ICSI was 28.6%. Thus, the developmental competence of 1-day-old oocytes was improved by MESI. CONCLUSIONS: The MESI method has the potential to improve the success rate of infertility treatments for women of a late reproductive age.

8.
Reprod Med Biol ; 17(4): 421-433, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30377395

RESUMO

BACKGROUND: Recent technological development allows nearly complete replacement of the cytoplasm of egg/embryo, eliminating the transmission of undesired defective mitochondria (mutated mitochondrial DNA: mtDNA) for patients with inherited mitochondrial diseases, which is called mitochondrial replacement therapy (MRT). METHODS: We review and summarize the mitochondrial biogenesis and mitochondrial diseases, the research milestones and future research agenda of MRT and also discuss MRT-derived potential application in common assisted reproductive technology (ART) treatment for subfertile patients. MAIN FINDINGS: Emerging techniques, involving maternal spindle transfer (MST) and pronuclear transfer (PNT), have demonstrated in preventing carryover of the unbidden (mutated) mtDNA in egg or in early embryos. The House of Parliament in the United Kingdom passed regulations permitting the use of MST and PNT in 2015. Furthermore, the Human Fertilization and Embryology Authority (HFEA) to granted licenses world first use of those techniques in March 2017. However, recent evidence demonstrated gradual loss of donor mtDNA and reversal to the nuclear DNA-matched haplotype in MRT derivatives. CONCLUSION: While further studies are needed to clarify mitochondrial biogenesis responsible for reversion, ruling in United Kingdom may shift the current worldwide consensus that prohibits gene modification in human gametes or embryos, toward allowing the correction of altered genes in germline.

9.
Bioethics ; 31(1): 20-26, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27973721

RESUMO

Mitochondrial replacement techniques (MRTs), known in the popular media as 'three-parent' or 'three-person' IVFs, have the potential to enable women with mitochondrial diseases to have children who are genetically related to them but without such diseases. In the debate regarding whether MRTs should be made available, an issue that has garnered considerable attention is whether MRTs affect the characteristics of an existing individual or whether they result in the creation of a new individual, given that MRTs involve the genetic manipulation of the germline. In other words, do MRTs affect the qualitative identity or the numerical identity of the resulting child? For instance, a group of panelists on behalf of the UK Human Fertilisation and Embryology Authority (HFEA) has claimed that MRTs affect only the qualitative identity of the resulting child, while the Working Group of the Nuffield Council on Bioethics (NCOB) has argued that MRTs would create a numerically distinct individual. In this article, I shall argue that MRTs do create a new and numerically distinct individual. Since my explanation is different from the NCOB's explanation, I shall also offer reasons why my explanation is preferable to the NCOB's explanation.


Assuntos
Temas Bioéticos , Mitocôndrias/genética , Doenças Mitocondriais/terapia , Terapia de Substituição Mitocondrial/ética , Pessoalidade , Feminino , Engenharia Genética/ética , Humanos , Doenças Mitocondriais/genética , Técnicas de Reprodução Assistida
10.
Bioethics ; 31(1): 27-36, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27973714

RESUMO

Jürgen Habermas is regarded as a central bioconservative commentator in the debate on the ethics of human prenatal genetic manipulations. While his main work on this topic, The Future of Human Nature, has been widely examined in regard to his position on prenatal genetic enhancement, his arguments regarding prenatal genetic therapeutic interventions have for the most part been overlooked. In this work I do two things. First, I present the three necessary conditions that Habermas establishes for a prenatal genetic manipulation to be regarded as morally permissible. Second, I examine if mitochondrial replacement techniques meet these necessary conditions. I investigate, specifically, the moral permissibility of employing pronuclear transfer and maternal spindle transfer. I conclude that, according to a Habermasian perspective on prenatal genetic manipulation, maternal spindle transfer (without using a preselected sperm and egg) and pronuclear transfer are morally impermissible. Maternal spindle transfer is, in principle, morally permissible, but only when we have beforehand preselected a sperm and an egg for our reproductive purpose. These findings are relevant for bioconservatives, both for those who hold a Habermasian stance and for those who hold something akin to a Habermasian stance, because they answer the question: what should bioconservatives do regarding mitochondrial replacement techniques? In fact, the answer to this question does not only normatively prescribe what bioconservatives should do in terms of their personal morality, but it also points towards what kind of legislation regulating mitochondrial replacement techniques they should aim at.


Assuntos
Melhoramento Genético/ética , Terapia Genética/ética , Terapia de Substituição Mitocondrial/ética , Princípios Morais , Humanos , Mitocôndrias
11.
Med Health Care Philos ; 20(4): 503-511, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28429249

RESUMO

This paper examines whether there are moral differences between the mitochondrial replacement techniques that have been recently developed in order to help women afflicted by mitochondrial DNA diseases to have genetically related children absent such conditions: maternal spindle transfer (MST) and pronuclear transfer (PNT). Firstly, it examines whether there is a moral difference between MST and PNT in terms of the divide between somatic interventions and germline interventions. Secondly, it considers whether PNT and MST are morally distinct under a therapy/creation optic. Finally, it investigates whether there is a moral difference between MST and PNT from a human embryo destruction point of view. I conclude, contra recent arguments, that regarding the first two points there is no moral differences between PNT and MST; and that regarding the third one MST is morally preferable to PNT, but only if we hold a gradualist account of the moral value of human embryos where zygotes have slight moral value.


Assuntos
Terapia de Substituição Mitocondrial/ética , Princípios Morais , Transferência Intratubária do Zigoto/ética , Análise Ética , Humanos , Doenças Mitocondriais/prevenção & controle
12.
Stem Cells ; 33(3): 639-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25377180

RESUMO

While the fertilized egg inherits its nuclear DNA from both parents, the mitochondrial DNA is strictly maternally inherited. Cells contain multiple copies of mtDNA, each of which encodes 37 genes, which are essential for energy production by oxidative phosphorylation. Mutations can be present in all, or only in some copies of mtDNA. If present above a certain threshold, pathogenic mtDNA mutations can cause a range of debilitating and fatal diseases. Here, we provide an update of currently available options and new techniques under development to reduce the risk of transmitting mtDNA disease from mother to child. Preimplantation genetic diagnosis (PGD), a commonly used technique to detect mutations in nuclear DNA, is currently being offered to determine the mutation load of embryos produced by women who carry mtDNA mutations. The available evidence indicates that cells removed from an eight-cell embryo are predictive of the mutation load in the entire embryo, indicating that PGD provides an effective risk reduction strategy for women who produce embryos with low mutation loads. For those who do not, research is now focused on meiotic nuclear transplantation techniques to uncouple the inheritance of nuclear and mtDNA. These approaches include transplantation of any one of the products or female meiosis (meiosis II spindle, or either of the polar bodies) between oocytes, or the transplantation of pronuclei between fertilized eggs. In all cases, the transferred genetic material arises from a normal meiosis and should therefore, not be confused with cloning. The scientific progress and associated regulatory issues are discussed.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/prevenção & controle , Terapia de Substituição Mitocondrial/métodos , Técnicas de Reprodução Assistida , Feminino , Humanos , Doenças Mitocondriais/genética , Gravidez
13.
Monash Bioeth Rev ; 34(1): 37-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27468863

RESUMO

Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.


Assuntos
Eugenia (Ciência) , Genealogia e Heráldica , Terapia de Substituição Mitocondrial , Técnicas de Reprodução Assistida , Doadores de Tecidos , Feminino , Humanos , Masculino
14.
Reprod Biomed Online ; 29(6): 708-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25444504

RESUMO

To study the effects of in-vitro matured ooplasm and spindle-chromosome complex (SCC) on the development of spindle-transferred oocytes, reciprocal spindle transfer was conducted between in-vivo and in-vitro matured oocytes. The reconstructed oocytes were divided into four groups according to their different ooplasm sources and SCC, artificially activated and cultured to the blastocyst stage. Oocyte survival, activation and embryo development after spindle transfer manipulation were compared between groups. Survival, activation, and cleavage rates of reconstructed oocytes after spindle transfer manipulation did not differ significantly among the four groups. The eight-cell stage embryo formation rates on day 3 and the blastocyst formation rate on day 6 were not significantly different between the in-vitro and in-vivo matured SCC groups when they were transplanted into in-vivo matured ooplasm. The rate of eight-cell stage embryo formation with in-vitro matured ooplasm was significantly lower (P < 0.05) than that of embryos with in-vivo matured ooplasm, and none of the embryos developed to the blastocyst stage. Therefore, SCC matured in vitro effectively supported the in-vitro development of reconstructed oocytes. Ooplasm matured in vitro, however, could not support the development of reconstructed oocytes, and may not be an appropriate source of ooplasm donation for spindle transfer.


Assuntos
Blastocisto/fisiologia , Cromossomos Humanos/fisiologia , Citoplasma/fisiologia , Desenvolvimento Embrionário/fisiologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , Fuso Acromático/fisiologia , Cromossomos Humanos/metabolismo , Técnicas de Cultura Embrionária/métodos , Humanos , Fuso Acromático/metabolismo
15.
Reprod Biomed Online ; 27(6): 599-610, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24135157

RESUMO

Mitochondrial disorders represent the most common group of inborn errors of metabolism. Clinical manifestations can be extremely variable, ranging from single affected tissues to multisystemic syndromes. Maternally inherited mitochondrial DNA (mtDNA) mutations are a frequent cause, affecting about one in 5000 individuals. The expression of mtDNA mutations differs from nuclear gene defects. Mutations are either homoplasmic or heteroplasmic, and in the latter case disease becomes manifest when the mutation load exceeds a tissue-specific threshold. Mutation load can vary between tissues and in time, and often an exact correlation between mutation load and clinical manifestations is lacking. Because of the possible clinical severity, the lack of treatment and the high recurrence risk of affected offspring for female carriers, couples request prevention of transmission of mtDNA mutations. Previously, choices have been limited due to a segregational bottleneck, which makes the mtDNA mutation load in embryos highly variable and the consequences largely unpredictable. However, recently it was shown that preimplantation genetic diagnosis offers a fair chance of unaffected offspring to carriers of heteroplasmic mtDNA mutations. Technically and ethically challenging possibilities, such maternal spindle transfer and pronuclear transfer, are emerging and providing carriers additional prospects of giving birth to a healthy child.


Assuntos
Herança Extracromossômica , Técnicas de Transferência de Genes , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Diagnóstico Pré-Natal/métodos , Técnicas de Reprodução Assistida , Animais , Humanos
16.
Fertil Steril ; 119(6): 964-973, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36787873

RESUMO

OBJECTIVES: To gain insights into the technical feasibility of maternal spindle transfer (MST) applied in the context of repeated in vitro fertilization (IVF) failures for the treatment of idiopathic infertility. DESIGN: A prospective pilot study. SETTING: IVF center. PATIENT(S): Twenty-five infertile couples with multiple previous unsuccessful IVF cycles (range, 3-11), no previous pregnancy, and no history of mitochondrial DNA (mtDNA) disease participated. The study focused on women <40 years, with previous IVF attempts characterized by a pattern of low fertilization rates and/or impaired embryo development. Couples with severe male-factor infertility were not eligible. Oocyte donors with previous successful IVF outcomes were matched with patients according to standard practice. INTERVENTION(S): We performed MST by transferring metaphase II spindles from the patients' oocytes into the previously enucleated donor oocytes, followed by intracytoplasmic sperm injection, in vitro embryo culture, blastocyst biopsy, and vitrification. Only euploid blastocysts were considered for embryo transfer. MAIN OUTCOME MEASURE(S): Outcome measures included oocyte fertilization, blastocyst development, clinical pregnancy and live birth, incidence of mitochondrial carryover and potential mtDNA reversal, as well as general health of the children born. RESULT(S): Twenty-eight MST cycles produced 6 children (19 embryo transfers, 7 clinical pregnancies). Pediatric follow-up of the children, performed at intervals from birth to 12-24 months of age, revealed their development to be unremarkable. DNA fingerprinting confirmed that the nuclear DNA of MST children was inherited from both parents, without any contribution from the oocyte donor. For 5 of the children, mtDNA was derived almost exclusively (>99%) from the donor. However, 1 child, who had similarly low mtDNA carryover (0.8%) at the blastocyst stage, showed an increase in the maternal mtDNA haplotype, accounting for 30% to 60% of the total at birth. CONCLUSION(S): This pilot study provides the first insights into the feasibility of applying MST for patients with idiopathic infertility and repeated IVF failures. Reconstructed oocytes produced embryos capable of implanting, developing to term and producing apparently healthy newborns/children. However, claims concerning the efficacy of MST with respect to infertility treatment would be premature considering the limitations of this study. Importantly, mtDNA reversal was detected in one child born after MST, a finding with possible implications for mitochondrial replacement therapies. CLINICAL TRIAL REGISTRATION NUMBER: Pilot trial registry number, ISRCTN11455145. The date of registration: 20/02/2018. The date of enrolment of the first patients: 18/03/2018.


Assuntos
Infertilidade Masculina , Sêmen , Gravidez , Humanos , Masculino , Feminino , Projetos Piloto , Estudos Prospectivos , Fertilização in vitro , DNA Mitocondrial/genética , Taxa de Gravidez , Estudos Retrospectivos
17.
Biosystems ; 223: 104819, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36450320

RESUMO

This short review provides basic knowledge on mitochondrial inheritance, its disorders, and potential ways to overcome them in human reproductive medicine. The latter are currently mostly associated with the so-called mitochondrial replacement (nuclear transfer) procedures, performed at different stages and with slight technical differences. Being promising but obviously highly invasive, these procedures require detailed investigation of their delayed effects on embryogenesis, pregnancy and future health. A special attention is paid to the newest available data on these issues, as well as to their limitations and possible further research directions.


Assuntos
Doenças Mitocondriais , Gravidez , Feminino , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Mitocôndrias/genética , Técnicas de Transferência Nuclear , DNA Mitocondrial/genética
18.
Theriogenology ; 180: 63-71, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953350

RESUMO

Cytoplasmic replacement by spindle transfer (ST) technique can be applied to improve the developmental competence of poor qualitied or aged oocytes. In cattle, ST technology has not been well established for producing embryos and the calves successfully using intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). The objective of this study was to develop a novel procedure for producing bovine ST embryos, which could be fundamental to applying ST technology in other mammals. In the present study, the efficacies of performing ICSI before (ICSI-ST) or after (ST-ICSI) and IVF on the development of ST bovine embryos were investigated. Results indicated that the blastocyst rate of ST embryos produced by ICSI-ST (24.7%) was higher (P < 0.05) than that produced by ST-ICSI (5.9%). On the other hand, ST-IVF had the highest fertilization rate (97.3%), polyspermy rate (24.7%), and lowest blastocyst rate (22.7%) when compared to denuded oocytes (DO), zona cut oocytes (ZC), and cumulus-oocyte complexes (COCs)-IVF groups. Finally, the in vitro development rates of ICSI-ST (24.5%) and ST-IVF (25.2%) were not significantly different (P > 0.05). However, the pregnancy rate (46.7%) and birth rate (33.3%) of ST-IVF were higher (P < 0.05) than those of ICSI-ST (6.3% and 0%, respectively). The percentage of mitochondrial DNA (mtDNA) heteroplasmy derived from donor karyoplasts of the 5 claves was between 2% and 18%. Taken together, performing ICSI prior to ST can improve the embryonic development of ST bovine embryos. Moreover, using IVF, instead of ICSI, for ST oocyte fertilization dramatically increased the pregnancy rate and birth rate of ST calves, in which mtDNA heteroplasmy derived from donor karyoplasts exists.


Assuntos
Fertilização in vitro , Injeções de Esperma Intracitoplásmicas , Animais , Blastocisto , Bovinos , Feminino , Fertilização , Fertilização in vitro/veterinária , Oócitos , Gravidez , Taxa de Gravidez , Injeções de Esperma Intracitoplásmicas/veterinária
19.
Hum Fertil (Camb) ; 25(5): 838-847, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33993847

RESUMO

Mitochondrial diseases are a group of conditions attributed to mutations of specific genes that regulate mitochondrial function. Maternal spindle transfer (MST) has been proposed as a method to prevent the transmission of these diseases and utilisation of the technique resulted in the birth of a baby free of disease in 2017 in Mexico. Potential flaws in research governance and the associated criticism emerged from the expansion of MST to provide a potentially new assisted reproductive technique to overcome infertility problems characterised by repeated in vitro embryo development arrest caused by mitochondrial dysfunction and cytoplasmic deficiencies of the oocyte. This applied technique represents a good example of the need to strike "a balance between taking appropriate precautions and hampering innovation". The purpose of this article is to explore, through a comprehensive literature search, whether and how this process can evolve from an experimental method to treat a medical condition to a standard of care solution for certain types of infertility. We argue that a number of key issues should be considered before applying the technique more broadly. These include regulatory oversight, safety and efficacy, cost, implications for research, essential laboratory skills and oversight, as well as the care needs of patients and egg donors.


Assuntos
Infertilidade , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Técnicas de Reprodução Assistida , Infertilidade/terapia , Mitocôndrias , Mutação
20.
Front Endocrinol (Lausanne) ; 12: 705837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413830

RESUMO

Oocytes reconstructed by spindle transfer (ST) are prone to chromosome abnormality, which is speculated to be caused by mechanical interference or premature activation, the mechanism is controversial. In this study, C57BL/6N oocytes were used as the model, and electrofusion ST was performed under normal conditions, Ca2+ free, and at room temperature, respectively. The effect of enucleation and electrofusion stimulation on MPF activity, spindle morphology, γ-tubulin localization and chromosome arrangement was compared. We found that electrofusion stimulation could induce premature chromosome separation and abnormal spindle morphology and assembly by decreasing the MPF activity, leading to premature activation, and thus resulting in chromosome abnormality in oocytes reconstructed via ST. Electrofusion stimulation was an independent factor of chromosome abnormality in oocytes reconstructed via ST, and was not related to enucleation, fusion status, temperature, or Ca2+. The electrofusion stimulation number should be minimized, with no more than 2 times being appropriate. As the electrofusion stimulation number increased, several typical abnormalities in chromosome arrangement and spindle assembly occurred. Although blastocyst culture could eliminate embryos with chromosomal abnormalities, it would significantly decrease the number of normal embryos and reduce the availability of embryos. The optimum operating condition for electrofusion ST was the 37°C group without Ca2+.


Assuntos
Blastocisto/citologia , Fusão Celular , Aberrações Cromossômicas , Embrião de Mamíferos/citologia , Oócitos/citologia , Indução da Ovulação/métodos , Fuso Acromático/fisiologia , Animais , Blastocisto/metabolismo , Fenômenos Eletromagnéticos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA