RESUMO
T cell-mediated islet destruction is a hallmark of autoimmune diabetes. Here, we examined the dynamics and pathogenicity of CD4+ T cell responses to four different insulin-derived epitopes during diabetes initiation in non-obese diabetic (NOD) mice. Single-cell RNA sequencing of tetramer-sorted CD4+ T cells from the pancreas revealed that islet-antigen-specific T cells adopted a wide variety of fates and required XCR1+ dendritic cells for their activation. Hybrid-insulin C-chromogranin A (InsC-ChgA)-specific CD4+ T cells skewed toward a distinct T helper type 1 (Th1) effector phenotype, whereas the majority of insulin B chain and hybrid-insulin C-islet amyloid polypeptide-specific CD4+ T cells exhibited a regulatory phenotype and early or weak Th1 phenotype, respectively. InsC-ChgA-specific CD4+ T cells were uniquely pathogenic upon transfer, and an anti-InsC-ChgA:IAg7 antibody prevented spontaneous diabetes. Our findings highlight the heterogeneity of T cell responses to insulin-derived epitopes in diabetes and argue for the feasibility of antigen-specific therapies that blunts the response of pathogenic CD4+ T cells causing autoimmunity.
Assuntos
Linfócitos T CD4-Positivos , Cromogranina A , Diabetes Mellitus Tipo 1 , Insulina , Camundongos Endogâmicos NOD , Animais , Diabetes Mellitus Tipo 1/imunologia , Cromogranina A/metabolismo , Cromogranina A/imunologia , Camundongos , Insulina/metabolismo , Insulina/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Células Th1/imunologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismoRESUMO
Cancers hijack the nervous system for growth and spread. Thus, disrupting neuron-cancer crosstalk holds promise for blocking metastasis. Recently, Padmanaban et al. reported new therapeutic targets and showed that breast cancer cells activate sensory neurons to secrete the neuropeptide substance P (SP), leading to single-strand (ss)RNA release and noncanonical Toll-like receptor (TLR)7 signaling that drives metastasis.
Assuntos
Células Receptoras Sensoriais , Transdução de Sinais , Receptor 7 Toll-Like , Humanos , Animais , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/imunologia , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Substância P/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologiaRESUMO
BACKGROUND: The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS: Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.
Assuntos
Proteínas , RNA , Humanos , Ligação Proteica , Proteínas/química , RNA/química , Simulação de Acoplamento Molecular , Conformação ProteicaRESUMO
The power of novel vaccination technologies and their rapid development were elucidated clearly during the COVID-19 pandemic. At the same time, it also became clear that there is an urgent need to discover and manufacture new antivirals that target emerging viral threats. Toxic species of cyanobacteria produce a range of bioactive compounds that makes them good candidates for drug discovery. Nevertheless, few studies demonstrate the antiviral potential of cyanobacteria. This is partly due to the lack of specific and simple protocols designed for the rapid detection of antiviral activity in cyanobacteria and partly because specialized facilities for work with pathogenic viruses are few and far between. We therefore developed an easy method for the screening of cyanobacterial cultures for antiviral activity and used our private culture collection of non-pathogenic virus isolates to show that antiviral activity is a prominent feature in the cyanobacterium Microcystis aeruginosa. In this proof-of-concept study, we show that M. aeruginosa extracts from three different cyanobacterial strains delay infection of diatom-infecting single-stranded DNA and single-stranded RNA viruses by up to 2 days. Our work shows the ease with which cyanobacteria from culture collections can be screened for antiviral activity and highlights the potential of cyanobacteria as an excellent source for the discovery of novel antiviral compounds, warranting further investigation.
Assuntos
Cianobactérias , Microcystis , Humanos , Pandemias , Antivirais/farmacologiaRESUMO
Ultraviolet germicidal irradiation (UVGI) disinfection technology is effective in inactivating microorganisms. However, its performance can vary against different microorganisms due to their diverse structural and genomic features. Thus, rapid predictions of UV (254 nm) inactivation kinetics are essential, particularly for highly infectious emerging pathogens, such as SARS-CoV-2, during the extemporary COVID-19 pandemic. In this study, aiming at single-strand RNA (ssRNA) viruses, an improved genomic model was introduced to predict the UV inactivation kinetics of viral genomes using genome sequence data. First, the overall virus infectivity loss in an aqueous matrix was estimated as the sum of damage to both the entire genome and the protein capsid. Then, the "UV rate constant ratio of aerosol and liquid" was used to convert the UV rate constant for viruses in a liquid-based matrix to an airborne state. The prediction model underwent both quantitative and qualitative validation using experimental data from this study and the literature. Finally, with the goal of mitigating potential airborne transmission of ssRNA viruses in indoor environments, this paper summarizes existing in-duct UVGI system designs and evaluates their germicidal performance. The prediction model may serve as a preliminary tool to assess the effectiveness of a UVGI system for emerging or unculturable viruses or to estimate the required UV dose when designing such a system.
Assuntos
Vírus de RNA , Vírus , Humanos , Pandemias , Aerossóis e Gotículas Respiratórios , Raios Ultravioleta , Vírus/efeitos da radiação , Desinfecção , RNARESUMO
Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.
Assuntos
Vírus Chikungunya , Poli(ADP-Ribose) Polimerases , ADP-Ribosilação , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Peptídeo Hidrolases/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismoRESUMO
Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure â¼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.
Assuntos
Braquiúros , Genoma Viral , Filogenia , Reoviridae , Animais , Braquiúros/virologia , Reoviridae/genética , Reoviridae/classificação , Orthobunyavirus/genética , AquiculturaRESUMO
BACKGROUND: Changes in gene expression levels during brain development are thought to have played an important role in the evolution of human cognition. With the advent of high-throughput sequencing technologies, changes in brain developmental expression patterns, as well as human-specific brain gene expression, have been characterized. However, interpreting the origin of evolutionarily advanced cognition in human brains requires a deeper understanding of the regulation of gene expression, including the epigenomic context, along the primate genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) to measure the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), both of which are associated with transcriptional activation in the prefrontal cortex of humans, chimpanzees, and rhesus macaques. RESULTS: We found a discrete functional association, in which H3K4me3HP gain was significantly associated with myelination assembly and signaling transmission, while H3K4me3HP loss played a vital role in synaptic activity. Moreover, H3K27acHP gain was enriched in interneuron and oligodendrocyte markers, and H3K27acHP loss was enriched in CA1 pyramidal neuron markers. Using strand-specific RNA sequencing (ssRNA-seq), we first demonstrated that approximately 7 and 2% of human-specific expressed genes were epigenetically marked by H3K4me3HP and H3K27acHP, respectively, providing robust support for causal involvement of histones in gene expression. We also revealed the co-activation role of epigenetic modification and transcription factors in human-specific transcriptome evolution. Mechanistically, histone-modifying enzymes at least partially contribute to an epigenetic disturbance among primates, especially for the H3K27ac epigenomic marker. In line with this, peaks enriched in the macaque lineage were found to be driven by upregulated acetyl enzymes. CONCLUSIONS: Our results comprehensively elucidated a causal species-specific gene-histone-enzyme landscape in the prefrontal cortex and highlighted the regulatory interaction that drove transcriptional activation.
Assuntos
Epigênese Genética , Histonas , Animais , Humanos , Lisina , Macaca mulatta/genética , Córtex Pré-Frontal , Expressão GênicaRESUMO
Cardiac fibrosis is a common pathological feature of cardiac remodelling process with disordered expression of multiple genes and eventually lead to heart failure. Emerging evidence suggests that long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. However, the exact mechanisms of lncRNAs as mediators in cardiac fibrosis have not been fully elucidated. This study aimed to profile the lncRNA expression pattern in human cardiac fibroblasts (HCFs) with cardiac fibrosis. We treated HCFs with transforming growth factor-ß (TGF-ß) to induce their activation. Then, strand-specific RNA-seq was performed to profile and classify lncRNAs; and perform functional analysis in HCFs. We study the transformation of HCFs with molecular and cell biology methods. Among all identified lncRNA candidates, 176 and 526 lncRNAs were upregulated and downregulated respectively in TGF-ß-stimulated HCFs compared with controls. Functional analyses revealed that the target genes of differentially expressed lncRNAs were mainly related to focal adhesion, metabolic pathways, Hippo signaling pathway, PI3K-Akt signaling pathway, regulation of actin cytoskeleton, and hypertrophic cardiomyopathy. As a representative, novel lncRNAs NONHSAG005537 and NONHSAG017620 inhibited the proliferation, migration, invasion, and transformation of HCFs induced by TGF-ß. Collectively, our study established the expression signature of lncRNAs in cardiac fibrosis and demonstrated the cardioprotective role of NONHSAG005537 and NONHSAG017620 in cardiac fibrosis, providing a promising target for anti-fibrotic therapy.
Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismoRESUMO
In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.
Assuntos
Colletotrichum , Micovírus , Vírus de RNA , Colletotrichum/patogenicidade , Colletotrichum/virologia , Micovírus/classificação , Micovírus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNARESUMO
Although the F-specific ssRNA phage MS2 has long had paradigm status, little is known about penetration of the genomic RNA (gRNA) into the cell. The phage initially binds to the F-pilus using its maturation protein (Mat), and then the Mat-bound gRNA is released from the viral capsid and somehow crosses the bacterial envelope into the cytoplasm. To address the mechanics of this process, we fluorescently labeled the ssRNA phage MS2 to track F-pilus dynamics during infection. We discovered that ssRNA phage infection triggers the release of F-pili from host cells, and that higher multiplicity of infection (MOI) correlates with detachment of longer F-pili. We also report that entry of gRNA into the host cytoplasm requires the F-plasmid-encoded coupling protein, TraD, which is located at the cytoplasmic entrance of the F-encoded type IV secretion system (T4SS). However, TraD is not essential for pilus detachment, indicating that detachment is triggered by an early step of MS2 engagement with the F-pilus or T4SS. We propose a multistep model in which the ssRNA phage binds to the F-pilus and through pilus retraction engages with the distal end of the T4SS channel at the cell surface. Continued pilus retraction pulls the Mat-gRNA complex out of the virion into the T4SS channel, causing a torsional stress that breaks the mature F-pilus at the cell surface. We propose that phage-induced disruptions of F-pilus dynamics provides a selective advantage for infecting phages and thus may be prevalent among the phages specific for retractile pili.
Assuntos
Escherichia coli/virologia , Fímbrias Bacterianas/virologia , Levivirus/fisiologia , Vírus de RNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Levivirus/genética , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismoRESUMO
The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.
Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/metabolismo , MicroRNAs/genética , Encéfalo/metabolismoRESUMO
COVID-19 can lead to acute respiratory syndrome, which can be due to dysregulated immune signaling. We analyze the distribution of CpG dinucleotides, a pathogen-associated molecular pattern, in the SARS-CoV-2 genome. We characterize CpG content by a CpG force that accounts for statistical constraints acting on the genome at the nucleotidic and amino acid levels. The CpG force, as the CpG content, is overall low compared with other pathogenic betacoronaviruses; however, it widely fluctuates along the genome, with a particularly low value, comparable with the circulating seasonal HKU1, in the spike coding region and a greater value, comparable with SARS and MERS, in the highly expressed nucleocapside coding region (N ORF), whose transcripts are relatively abundant in the cytoplasm of infected cells and present in the 3'UTRs of all subgenomic RNA. This dual nature of CpG content could confer to SARS-CoV-2 the ability to avoid triggering pattern recognition receptors upon entry, while eliciting a stronger response during replication. We then investigate the evolution of synonymous mutations since the outbreak of the COVID-19 pandemic, finding a signature of CpG loss in regions with a greater CpG force. Sequence motifs preceding the CpG-loss-associated loci in the N ORF match recently identified binding patterns of the zinc finger antiviral protein. Using a model of the viral gene evolution under human host pressure, we find that synonymous mutations seem driven in the SARS-CoV-2 genome, and particularly in the N ORF, by the viral codon bias, the transition-transversion bias, and the pressure to lower CpG content.
Assuntos
COVID-19/genética , Ilhas de CpG , Evolução Molecular , Genoma Viral , RNA Viral/genética , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidadeRESUMO
Balanced immune regulation is crucial for recognizing an invading pathogen, its killing, and elimination. Toll-like receptors (TLRs) are the key regulators of the innate immune system. It helps in identifying between self and nonself-molecule and eventually eliminates the nonself. Endosomal TLR, mainly TLR3, TLR7, TLR8, and membrane-bound TLR4, has a role in the induction of cytokine storms. TLR7/8 recognizes the ssRNA SARS-COV-2 and when it replicates to dsRNA, it is recognized by TLR3 and drives the TRIF-mediated inflammatory signaling like NF-κB, MAPK. Such signaling leads to significant transcription and translation of pro-inflammatory genes, releasing inflammatory molecules into the systemic circulation, causing an imbalance in the system. So, whenever an imbalance occurs, a surge in the pro-inflammatory mediators is observed in the blood, including cytokines like interleukin (IL)-2, IL-4, IL-6, IL-1ß, IL-8, interferon (IFN)-γ, tumor necrosis factor (TNF)-α. IL-6 and IL-1ß are one of the driving factors for bringing the cytokine storm into the systemic circulation, which migrates into the other organs, causing multiple organ failures leading to the death of the individual with severe illness.
Assuntos
COVID-19 , SARS-CoV-2 , Síndrome da Liberação de Citocina , Citocinas , Humanos , Interleucina-6 , Receptor 3 Toll-Like/genética , Receptor 7 Toll-Like , Receptores Toll-Like , Fator de Necrose Tumoral alfaRESUMO
BACKGROUND: Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. METHODS: We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. RESULTS: CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. CONCLUSIONS: This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models.
Assuntos
Vacinas Anticâncer , Melanoma , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/uso terapêutico , Imunoterapia , Interferon gama/genética , Sítios Internos de Entrada Ribossomal , Melanoma/genética , Melanoma/terapia , Camundongos , RNA Viral/genéticaRESUMO
The gateway for invasion by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into human host cells is via the angiotensin-converting enzyme 2 (ACE2) transmembrane receptor expressed in multiple immune and nonimmune cell types. SARS-CoV-2, that causes coronavirus disease 2019 (COVID-19; CoV-19) has the unusual capacity to attack many different types of human host cells simultaneously via novel clathrin- and caveolae-independent endocytic pathways, becoming injurious to diverse cells, tissues and organ systems and exploiting any immune weakness in the host. The elicitation of this multipronged attack explains in part the severity and extensive variety of signs and symptoms observed in CoV-19 patients. To further our understanding of the mechanism and pathways of SARS-CoV-2 infection and susceptibility of specific cell- and tissue-types and organ systems to SARS-CoV-2 attack in this communication we analyzed ACE2 expression in 85 human tissues including 21 different brain regions, 7 fetal tissues and 8 controls. Besides strong ACE2 expression in respiratory, digestive, renal-excretory and reproductive cells, high ACE2 expression was also found in the amygdala, cerebral cortex and brainstem. The highest ACE2 expression level was found in the pons and medulla oblongata in the human brainstem, containing the medullary respiratory centers of the brain, and may in part explain the susceptibility of many CoV-19 patients to severe respiratory distress.
Assuntos
Encéfalo/patologia , Encéfalo/virologia , COVID-19/virologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Especificidade de ÓrgãosRESUMO
Pseudouridine is one of the most abundant post-transcriptional modifications in RNA. We have previously shown that the FF99-derived parameters for pseudouridine and some of its naturally occurring derivatives in the AMBER distribution either alone or in combination with the revised γ torsion parameters (parmbsc0) failed to reproduce their conformational characteristics observed experimentally (Deb et al. in J Chem Inf Model 54:1129-1142, 2014; Deb et al. in J Comput Chem 37:1576-1588, 2016; Dutta et al. in J Chem Inf Model 60:4995-5002, 2020). However, the application of the recommended bsc0 correction did lead to an improvement in the description not only of the distribution in the γ torsional space but also of the sugar pucker distributions. In an earlier study, we examined the transferability of the revised glycosidic torsion parameters (χIDRP) for Ψ to its derivatives. We noticed that although these parameters in combination with the AMBER FF99-derived parameters and the revised γ torsional parameters resulted in conformational properties of these residues that were in better agreement with experimental observations, the sugar pucker distributions were still not reproduced accurately. Here we report a new set of partial atomic charges for pseudouridine, 1-methylpseudouridine, 3-methylpseudouridine and 2'-O-methylpseudouridine and a new set of glycosidic torsional parameters (χND) based on chosen glycosidic torsional profiles that most closely corresponded to the NMR data for conformational propensities and studied their effect on the conformational distributions using REMD simulations at the individual nucleoside level. We have also studied the effect of the choice of water model on the conformational characteristics of these modified nucleosides. Our observations suggest that the current revised set of parameters and partial atomic charges describe the sugar pucker distributions for these residues more accurately and that the choice of a suitable water model is important for the accurate description of their conformational properties. We have further validated the revised sets of parameters by studying the effect of substitution of uridine with pseudouridine within single stranded RNA oligonucleotides on their conformational and hydration characteristics.
Assuntos
Pseudouridina , RNA , Conformação Molecular , Pseudouridina/química , RNA/química , Açúcares , Água/químicaRESUMO
Free chlorine disinfection is widely applied to inactivate viruses by reacting with their biomolecules, which include nucleic acids, proteins, and lipids. Knowing the reactivities of viral genomes with free chlorine and the protection that encapsidation provides would ultimately help predict virus susceptibility to the disinfectant. The relative reactivities of different viral genome types and the impact of viral higher order structure with free chlorine are poorly characterized. Here, we studied the reactivity of viral genomes representing four genome types from virus particles with diverse structures, namely, (+)ssRNA (MS2), dsRNA (φ6), ssDNA (φX174), and dsDNA (T3) with free chlorine. We compared the reactivities of these viral nucleic acids when they were suspended in phosphate buffer solutions (naked forms) and when they were in the native virus particles (encapsidated forms). The reactivities of nucleic acids were tracked by polymerase chain reaction (PCR)-based assays. The naked dsDNA of T3 was the least reactive with free chlorine, with an average second order rate constant normalized by the number of bases in the measured regions (in M-1 s-1 b-1) that was 34×, 65×, and 189× lower than those of the dsRNA of φ6, ssRNA of MS2, and ssDNA of φX174, respectively. Moreover, different regions in the ssRNA genome of MS2 and the dsRNA genome of φ6 exhibited statistically different reaction kinetics. The genomes within virus particles reacted slower than the naked genomes overall, but the extent of these differences varied among the four viruses. The results on viral nucleic acid reactivity help explain different susceptibilities of viruses to inactivation by free chlorine and also provide a valuable comparison of the susceptibilities of different nucleic acids to oxidants.
Assuntos
Ácidos Nucleicos , Vírus , Cloro/farmacologia , Desinfecção/métodos , Inativação de VírusRESUMO
Approximately 17 years after the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic, the world is currently facing the COVID-19 pandemic caused by SARS corona virus 2 (SARS-CoV-2). According to the most optimistic projections, it will take more than a year to develop a vaccine, so the best short-term strategy may lie in identifying virus-specific targets for small molecule-based interventions. All coronaviruses utilize a molecular mechanism called programmed -1 ribosomal frameshift (-1 PRF) to control the relative expression of their proteins. Previous analyses of SARS-CoV have revealed that it employs a structurally unique three-stemmed mRNA pseudoknot that stimulates high -1 PRF rates and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity impairs virus replication, suggesting that this activity may be therapeutically targeted. Here, we comparatively analyzed the SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar -1 PRF rates and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablate -1 PRF activity. We noted that the upstream attenuator hairpin activity is also functionally retained in both viruses, despite differences in the primary sequence in this region. Small-angle X-ray scattering analyses indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 have the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may be promising lead compounds to combat the current COVID-19 pandemic.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , RNA Viral/genética , Betacoronavirus/química , COVID-19 , Regulação Viral da Expressão Gênica , Humanos , Pandemias , RNA Viral/química , SARS-CoV-2 , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19RESUMO
SARS-CoV-2 is a member of the subgenus Sarbecovirus and thus contains the genetic element s2m. We have extensively mined nucleotide data in GenBank in order to obtain a comprehensive list of s2m sequences both in the four virus families where s2m has previously been described and in other groups of organisms. Surprisingly, there seems to be a xenologue of s2m in a large number of insect species. The function of s2m is unknown, but our data show a very high degree of sequence conservation both in insects and in viruses and that the version of s2m found in SARS-CoV-2 has unique features, not seen in any other virus or insect strains.