Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(Suppl 10): 352, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999491

RESUMO

BACKGROUND: The stability of protein sequence structure plays an important role in the prevention and treatment of diseases. RESULTS: In this paper, particle swarm optimization and tabu search are combined to propose a new method for protein structure prediction. The experimental results show that: for four groups of artificial protein sequences with different lengths, this method obtains the lowest potential energy value and stable structure prediction results, and the effect is obviously better than the other two comparison methods. Taking the first group of protein sequences as an example, our method improves the prediction of minimum potential energy by 127% and 7% respectively. CONCLUSIONS: Therefore, the method proposed in this paper is more suitable for the prediction of protein structural stability.


Assuntos
Algoritmos , Proteínas , Sequência de Aminoácidos , Estabilidade Proteica , Proteínas/química
2.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080377

RESUMO

The flue gas from fossil fuel power plants is a long-term stable and concentrated emission source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2 uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min). These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under high humidity conditions in industrial settings.


Assuntos
Estruturas Metalorgânicas , Adsorção , Dióxido de Carbono/química , Umidade , Estruturas Metalorgânicas/química , Centrais Elétricas
3.
Macromol Biosci ; 24(5): e2300449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38178686

RESUMO

Collagen membrane with outstanding biocompatibility exhibits immense potential in the field of corneal repair and reconstruction, but the poor mechanical properties limit its clinical application. Polycaprolactone (PCL) is a biodegradable polymer widely explored for application in corneal reconstruction due to its excellent mechanical properties, biocompatibility, easy processability, and flexibility. In this study, a PCL/collagen composite membrane with reinforced mechanical properties is developed. The membrane has a strong composite structure with collagen by utilizing a porous and hydrophilic PCL scaffold, maintaining its integrity even after immersion. The suture retention and mechanical tests demonstrate that compared with the pure collagen membrane, the prepared membrane has a greater tensile strength and twice the modulus of elasticity. Further, the suture retention strength is improved by almost two times. In addition, the membrane remains fully intact on the implant bed in an in vitro corneal defect model. Moreover, the membrane can be tightly sutured to a rabbit corneal defect, progressively achieve epithelialization, and remain unchanged during observation. Overall, the PCL/collagen composite membrane is a promising candidate as a suturable corneal restoration material in clinical keratoplasty.


Assuntos
Colágeno , Córnea , Poliésteres , Animais , Coelhos , Colágeno/química , Poliésteres/química , Porosidade , Resistência à Tração , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
4.
ChemSusChem ; 16(17): e202300399, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171048

RESUMO

Nowadays, solid electrolytes are considered the main alternative to conventional liquid electrolytes in lithium batteries. The fabrication of these materials is however limited by the strict synthesis conditions, requiring high temperatures which can negatively impact the final performances. Here, it is shown that a modification of garnet-based Li7 La3 Zr2 O12 (LLZO) and the incorporation of tellurium can accelerate the synthesis process by lowering the formation temperature of cubic LLZO at temperatures below 700 °C. Optimized synthesis at 750 °C showed a decrease in particle size and cell parameter for samples with higher amounts of Te and the evaluation of electrochemical performances reported for LLZO Te0.25 a value of ionic conductivity of 5,15×10-5  S cm-1 after hot-pressing at 700 °C, two orders of magnitude higher than commercial Al-LLZO undergoing the same working conditions, and the highest value at this densification temperature. Partial segregation of Te-rich phases occurs for high-temperature densification. Our study shows the advantages of Te insertion on the sintering process of LLZO garnet and demonstrates the achievement of highly conductive LLZO with a low-temperature treatment.

5.
Sci Total Environ ; 759: 143468, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33277016

RESUMO

Globally, most cities are facing severe challenges associated with dust pollution and it is of great significance to propose an effective and environmentally friendly dust control method. This study used enzymatically induced calcite precipitation (EICP) technology for dust control. Moreover, polyvinyl acetate (PVAc) was added to the cementation solution to improve its rainfall erosion resistance. The results showed that the optimum ratio of urease solution to cementation solution differed according to the concentrations of reactants in the cementation solution. Under combined EICP and PVAc (50 g/L) treatment, the stability of the dust-slope significantly improved. Moreover, little dust soil loss was washed out by simulated rainfall because of the more stable spatial structure of CaCO3 precipitation. Furthermore, PVAc addition increased the surface strength of slopes, while the cemented layer became thinner. With this combined EICP and PVAc (50 g/L) treatment, in a field test, the treated area of the slope had higher surface strengths and stronger erosion resistance than untreated areas. These higher surface strengths were attributed to the smaller particle size, and the stronger cementing effect of grass seeds. These results demonstrated that EICP-PVAc treatment significantly controlled dust and mitigated surface erosion of dust-slopes. This represents promising potential for the prevention of dust pollution.


Assuntos
Poeira , Chuva , Cidades , Poaceae , Solo
6.
Chemosphere ; 258: 127208, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32544810

RESUMO

Pyridine and organics containing pyridine rings are widely used but persist in the environment and cause toxic pollution. Due to the attraction of the nitrogen atoms to the electrons in the pi bond, the pyridine ring is difficult to oxidize by oxidant. Here, we propose that ultraviolet (UV) irradiation activates the electrons in the pi bond and enables combination with the hydroxyl radical (OH) originating from hydrogen peroxide (H2O2) to eliminate pyridine quickly and mineralize the byproducts. The removal rates of pyridine and total organic carbon (TOC) were compared in different treatments: UV irradiation, UV/H2O2 treatment and Fenton oxidation with different initial pyridine concentrations, pH values and H2O2 concentrations. The UV/H2O2 treatment yielded a higher pyridine removal rate and greater mineralization than the other treatments. The removal rate of pyridine was highest in neutral aqueous solution and H2O2 concentration of 10 mM. At an initial H2O2 concentration of 10 mM, more than 90% of the pyridine was degraded in 10 min, and approximately 70% of the TOC was removed in 60 min. The absorption of UV light at 254 nm by the pi bond of pyridine can accelerate the damage to the stable pyridine structure, especially in the presence of OH. This study provides a promising alternative for the removal and mineralization of pyridine ring-containing materials.


Assuntos
Peróxido de Hidrogênio/química , Fotólise , Piridinas/análise , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Estudos de Viabilidade , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Oxirredução , Piridinas/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
7.
Sci Total Environ ; 696: 133777, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442728

RESUMO

Developing underwater superoleophobic filtration materials with robust stability and excellent anti-oil-fouling performance in harsh environments is desired for high efficiency oil/water separation. In this work, irregular hydrophilic graphene oxide (GO) was adopted as a coating material to modify oxidized copper mesh with desired hierarchical surface roughness and hydrophilic composition through a novel in situ copper ion induced crosslinking method. The combination of microscale copper wires and nanoscale hydrophilic GO sheets endowed the resultant GO coated oxidized copper mesh (GO@CuO) with unique underwater superoleophobicity and excellent anti-oil-fouling property. Moreover, the mesh exhibited excellent stability in corrosive solutions with no apparent variations in wetting properties, indicating its good stability. The as-prepared GO@CuO mesh can be applied to separate oil/water mixtures with high efficiency (>99.49%) and good reusability. Due to the excellent anti-oil-fouling property, high separation efficiency, and good stability, the as-prepared underwater superoleophobic mesh could find broad applications in oil/water separations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA