Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Res ; 206: 107294, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992851

RESUMO

Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor ß (GRß) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRß ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRß signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRß signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.


Assuntos
Ácido Aspártico , Tetracloreto de Carbono , Cirrose Hepática , Fígado , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ácido Aspártico/metabolismo , Camundongos , Corticosterona , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Colesterol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Camundongos Knockout
2.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39201706

RESUMO

Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.


Assuntos
Sistema Enzimático do Citocromo P-450 , Oxirredução , Esteroides , Sistema Enzimático do Citocromo P-450/metabolismo , Esteroides/metabolismo , Humanos , Catálise , Animais , Biocatálise
3.
Angew Chem Int Ed Engl ; 63(33): e202406542, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820076

RESUMO

Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.


Assuntos
Aromatase , Oxirredução , Aromatase/metabolismo , Aromatase/química , Humanos , Peróxidos/química , Peróxidos/metabolismo , Animais , Ânions/química , Ânions/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/química , Coelhos , Esteroides/química , Esteroides/metabolismo , Androstenodiona/química , Androstenodiona/metabolismo
4.
Australas J Dermatol ; 64(3): e229-e232, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37387304

RESUMO

Acne vulgaris, a common dermatological condition that affects most adolescents and young adults, can indicate an underlying pathology if present prematurely in mid-childhood. Premature acne can be caused by premature adrenarche secondary to non-classical congenital adrenal hyperplasia (NC-CAH), a condition arising from 21-hydroxylase deficiency. This report describes a pair of monozygotic twin brothers with identical premature onset of acne, who were found to have an identical homozygous mutation in the promoter region of the CYP21A2 gene. While it is widely known that NCCAH is associated with genetic changes, the drive behind onset of adrenarche are widely unknown. As such, this report provokes thoughts on whether adrenarche could be influenced by adrenal genetic polymorphisms.


Assuntos
Acne Vulgar , Hiperplasia Suprarrenal Congênita , Puberdade Precoce , Masculino , Adolescente , Adulto Jovem , Humanos , Criança , Gêmeos Monozigóticos , Hiperplasia Suprarrenal Congênita/genética , Acne Vulgar/genética , Acne Vulgar/complicações , Esteroide 21-Hidroxilase/genética
5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445654

RESUMO

Histone deacetylase inhibitor (HDACi) is a drug mainly used to treat hematological tumors and breast cancer, but its inhibitory effect on breast cancer falls short of expectations. Grape seed proanthocyanidin extract (GSPE) with abundant proanthocyanidins (PAs) has been explored for its inhibition of HDAC activity in vitro and in vivo. To enhance HDACi's effectiveness, we investigated the potential of PA to synergistically enhance HDACi chidamide (Chi), and determined the underlying mechanism. We evaluated the half-inhibitory concentration (IC50) of PA and Chi using the cell counting kit 8 (CCK8), and analyzed drugs' synergistic effect with fixed-ratio combination using the software Compusyn. Breast cancer cell's phenotypes, including short-term and long-term proliferation, migration, invasion, apoptosis, and reactive oxygen species (ROS) levels, were assessed via CCK8, clone-formation assay, wound-healing test, Transwell Matrigel invasion assay, and flow-cytometry. Protein-protein interaction analysis (PPI) and KEGG pathway analysis were used to determine the underlying mechanism of synergy. PA + Chi synergistically inhibited cell growth in T47D and MDA-MB-231 breast cancer cell lines. Short-term and long-term proliferation were significantly inhibited, while cell apoptosis was promoted. Ten signaling pathways were identified to account for the synergistic effect after RNA sequencing. Their synergism may be closely related to the steroid biosynthesis and extracellular matrix (ECM) receptor interaction pathways. PA + Chi can synergistically inhibit breast cancer cell growth and proliferation, and promote apoptosis. These effects may be related to steroid biosynthesis or the ECM receptor pathway.


Assuntos
Neoplasias , Proantocianidinas , Proantocianidinas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Esteroides/farmacologia
6.
Mol Plant Microbe Interact ; 34(8): 922-938, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33822647

RESUMO

Diseases caused by fungi can affect the quality and yield of the leaves of tea [Camellia sinensis (L.) Kuntze]. At present, the availability of highly effective and safe fungicides for controlling tea plants remains limited. The objectives of this study were to identify novel compounds with antifungal activities and to determine their molecular mechanisms. A series of sulfone compounds containing 1,3,4-oxadiazole were evaluated in China for their antifungal activities against several pathogens causing foliar diseases and high production losses. Transcriptomics and bioinformatics were used to analyze the differentially expressed genes of Lasiodiplodia theobromae treated with a representative compound, jiahuangxianjunzuo (JHXJZ). Moreover, the effects of JHXJZ on ergosterol content, membrane permeability, cell structure, and seven key genes involved in the ergosterol biosynthetic pathway were investigated. JHXJZ had a strong antifungal activity against L. theobromae in vitro, with an effective concentration giving 50% inhibition of 3.54 ± 0.55 µg/ml, and its curative efficacies on detached tea leaves reached 41.78% at 100 µg/ml. JHXJZ upregulated 899 genes (P < 0.05) and downregulated 1,185 genes (P < 0.05) in L. theobromae. These genes were found to be associated with carbohydrate metabolic processes, which are closely related to steroid biosynthesis in the Kyoto Encyclopedia of Genes and Genomes pathways. Because JHXJZ regulates the key genes of sterol biosynthesis, it decreased the ergosterol content, increased cell-membrane permeability, changed the cellular structure, enhanced the roughness of the surface of the hyphae, and resulted in degradation of the hyphal nuclei and necrosis of the hyphal cytoplasm. Our study demonstrates that JHXJZ is a fungicide with a novel mechanism of action that differs from that of triazole fungicides. JHXJZ has potential for applications in controlling tea plant diseases.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Ergosterol , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas/genética , Sulfonas , Chá
7.
J Cell Biochem ; 122(12): 1925-1935, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581457

RESUMO

Adrenocortical carcinoma (ACC) is a rare, but highly aggressive cancer of the adrenal cortex with a generally poor prognosis. Despite being rare, completely resected ACCs present a high risk of recurrence. Musashi-2 (MSI2) has recently been recognized as a potential prognostic biomarker and therapeutic target in many cancers. However, no studies have evaluated the clinical significance of MSI2 expression in ACC. Here, we addressed MSI2 expression and its association with ACC prognosis and clinicopathological parameters. MSI2 expression was analyzed in TCGA, GSE12368, GSE33371, and GSE49278 ACC datasets; and its correlation with other genes and immune cell infiltration were investigated by using the R2: Genomics Analysis and Visualization Platform and TIMER databases, respectively. Enrichment analysis was performed with the DAVID Functional Annotation Tool. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were used to explore the prognostic role of MSI2 in ACC. Our findings demonstrated the potential value of MSI2 overexpression as an independent predictor of poor prognosis in patients with completely resected ACC (hazard ratio 6.715, 95% confidence interval 1.266 - 35.620, p =.025). In addition, MSI2 overexpression was associated with characteristics of unfavorable prognosis, such as cortisol excess (p = .002), recurrence (p =.003), and death (p =.015); positively correlated with genes related to steroid biosynthesis (p < .05); and negatively correlated with immune-related pathways (p < .05). Our findings demonstrate that MSI2 has value as a prognostic marker for completely resected ACC and reinforce the investigation of its role as a possible therapeutic target for patients with ACC.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Biomarcadores Tumorais/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias/imunologia , Proteínas de Ligação a RNA/imunologia , Neoplasias do Córtex Suprarrenal/imunologia , Neoplasias do Córtex Suprarrenal/mortalidade , Carcinoma Adrenocortical/imunologia , Carcinoma Adrenocortical/mortalidade , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esteroides/imunologia
8.
Exp Eye Res ; 209: 108671, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133966

RESUMO

Hereditary connective tissue diseases form a heterogeneous group of disorders that affect collagen and extracellular matrix components. The cornea and the skin are among the major forms of connective tissues, and syndromes affecting both organs are often due to mutations in single genes. Brittle cornea syndrome is one of the pathologies that illustrates this association well. Furthermore, sex hormones are known to play a role in the maintenance of the structure and the integrity of the connective tissue including the skin and cornea, and may be involved in pathogenesis of oculocutaneous diseases. Herein, a double consanguineous family of Moroccan origin with two affected siblings, with suspected brittle cornea syndrome, was recruited. Ophthalmic examinations and genetic testing were performed in all the nuclear family individuals. Clinical examinations showed that the two affected boys presented with thinning of the cornea, blue sclera, keratoconus, hyperelasticity of the skin, joint hypermobility, muscle weakness, hearing loss and dental abnormalities that are compatible with the diagnosis of BCS disease. They showed however additional clinical signs including micropenis, hypospadias and cryptorchidism, suggesting abnormalities in endocrine pathways. Using a duo exome sequencing analysis performed in the mother and the propositus, we identified the novel homozygous missense mutation c.461G > A (p.Arg154Gln) in the short-chain dehydrogenase/reductase family 42E member 1 (SDR42E1) gene. This novel mutation, which co-segregated with the disease in the family, was predicted to be pathogenic by bioinformatics tools. SDR42E1 stability analysis using DynaMut web-server showed that the p.Arg154Gln mutations has a destabilizing effect with a ΔΔG value of -1.039 kcal/mol. As this novel gene belongs to the large family of short-chain dehydrogenases/reductases (SDR) thought to be involved in steroid biosynthesis, endocrinological investigations subsequently revealed that the two patients also had low levels of cholesterol. Karyotyping revealed a normal 46,XY karyotype for the two boys, excluding other causes of disorders of sex development due to chromosomal rearrangements. In conclusion, our study reveals that mutation in the novel SDR42E1 gene alters the steroid hormone synthesis and associated with a new syndrome we named oculocutaneous genital syndrome. In addition, this study highlights the role of SDR42E1 in the regulation of cholesterol metabolism in the maintenance of connective tissue and sexual maturation in humans.


Assuntos
Anormalidades Múltiplas , Anormalidades do Olho/genética , Oftalmopatias Hereditárias/genética , Instabilidade Articular/congênito , Mutação , Redutases-Desidrogenases de Cadeia Curta/genética , Anormalidades da Pele/genética , Dermatopatias Genéticas/genética , Esteroides/biossíntese , Criança , Pré-Escolar , DNA/genética , Análise Mutacional de DNA , Anormalidades do Olho/metabolismo , Oftalmopatias Hereditárias/metabolismo , Humanos , Instabilidade Articular/genética , Instabilidade Articular/metabolismo , Masculino , Linhagem , Redutases-Desidrogenases de Cadeia Curta/metabolismo , Anormalidades da Pele/metabolismo , Dermatopatias Genéticas/metabolismo
9.
Bioorg Med Chem Lett ; 43: 128068, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915256

RESUMO

Botanical fungicides are promising replacements for pure chemical synthetic pesticides in agriculture and organic food production. Methylaervine with good physicochemical properties exhibited effective activity against F. solani (EC50 = 10.56 µM) better than the positive control thiophanate-methyl (EC50 = 27.94 µM). The activity changes of malondialdehyde (MDA), catalase (CAT) and superoxide dismutase (SOD) showed that methylaervine could significantly induce lipid peroxidation and activate the antioxidant enzymes. According to the metabolomics analysis, fifty-one differential metabolites and two major antifungal-related pathways covering tricarboxylic acid (TCA) cycle and steroid biosynthesis were identified. Moreover, the disturbance for TCA cycle was validated by the activity changes of dehydrogenase (MDH) and succinate dehydrogenase (SDH) as well as docking simulation. Homology modeling and docking study revealed that hydrogen bonds and hydrophobic interactions played a vital role in methylaervine-protein stability. This study provided new insight into the antifungal activity of methylaervine, which is important for the development of novel botanical fungicides based on methylaervine.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Metabolômica , Antifúngicos/química , Antifúngicos/metabolismo , Relação Dose-Resposta a Droga , Fusarium/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
10.
Gen Comp Endocrinol ; 312: 113870, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324841

RESUMO

The sexual size dimorphism of the Chinese tongue sole (Cynoglossus semilaevis) has greatly obstructed its sustainable development; however, the underlying mechanism remains unclear. Based on C. semilaevis transcriptomic information, 24-dehydrocholesterol reductase (dhcr24) was identified in steroid biosynthesis, showing female-liver-biased expression. Dhcr24 has been reported to participate in various processes, such as cholesterol synthesis, oxidative stress response, neuroprotection, and cell survival. The present study assessed its role in the sexual size dimorphism in fish. First, detailed expression pattern analysis showed that dhcr24 mRNAs were extensively expressed in tissues and the highest levels were found in the liver and gonads of females. Analysis of the dhcr24 promoter region demonstrated different DNA methylation statuses in female, male, and pseudomale gonads with higher epigenetic modification in males. The confirmation of transcription activity of the dhcr24 promoter and putative transcription factors (e.g., ER, AR, SREBP, and POU1F1a) provides the foundation for studying its regulatory mechanism. Finally, dhcr24-siRNA mediated knock-down assay using C. semilaevis liver cells showed that steroid biosynthesis related genes (e.g., ebp, dhcr7, and sc5d), core component of PI3K/Akt pathway (e.g., pi3k), and igf1r exhibited different expression patterns. Further investigation on the interplay between steroid hormones, dhcr24, PI3K/Akt, and IGF-1 systems will be valuable to better understand the mechanism underlying the sexual size dimorphism in C. semilaevis.


Assuntos
Proteínas de Peixes , Linguados , Oxirredutases , Animais , Tamanho Corporal , China , Epigênese Genética , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Linguados/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Oxirredutases/genética , Oxirredutases/metabolismo , Regiões Promotoras Genéticas , Caracteres Sexuais , Fatores de Transcrição
11.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575877

RESUMO

Embryo manipulation is a requisite step in assisted reproductive technology (ART). Therefore, it is of great necessity to appraise the safety of ART and investigate the long-term effect, including lipid metabolism, on ART-conceived offspring. Augmenting our ART rabbit model to investigate lipid metabolic outcomes in offspring longitudinally, we detected variations in hepatic DNA methylation ART offspring in the F3 generation for embryonic exposure (multiple ovulation, vitrification and embryo transfer). Through adult liver metabolomics and proteomics, we identified changes mainly related to lipid metabolism (e.g., polyunsaturated fatty acids, steroids, steroid hormone). We also found that DNA methylation analysis was linked to changes in lipid metabolism and apoptosis genes. Nevertheless, these differences did not apparently alter the general health status. Thus, our findings suggest that ART is likely to be a player in embryo epigenetic events related to hepatic homeostasis alteration in adulthood.


Assuntos
Metilação de DNA , Transferência Embrionária , Epigenômica , Fígado/embriologia , Técnicas de Reprodução Assistida , Animais , Embrião de Mamíferos/metabolismo , Epigênese Genética , Feminino , Genoma , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Metaboloma , Gravidez , Prenhez , Proteoma , Proteômica/métodos , Coelhos , Reprodução , Esteroides/biossíntese , Vitrificação
12.
Biol Reprod ; 102(1): 145-155, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31504196

RESUMO

The association between theca cells (TCs) and granulosa cells is pivotal to steroid biosynthesis in the ovary. During the late secondary follicle stage, TCs form a layer around granulosa cells, after which their steroidogenic function falls under the control of luteinizing hormone (LH) that activates the cAMP signaling pathway via a G protein-coupled receptor. In addition to perilipin-2, a marker for lipid droplets containing esters as substrates for TCs to produce steroidogenic hormones, other essential proteins, like steroidogenic acute regulatory protein (StAR), cytochrome P450 11A1, cytochrome P450c17, 3 beta-hydroxysteroid dehydrogenase/delta 5 -> 4-isomerase type 1, and 3 beta-hydroxysteroid dehydrogenase/delta 5 -> 4-isomerase type 2, play a role in the cascade after luteinizing hormone-choriogonadotropic hormone receptor (LH/CG-R) occupation by LH. The aim of the present study was to assess expression levels and corresponding amounts of LH/CG-R, perilipin-2, and enzymes involved in the steroidogenic pathway of TCs based on follicle stage. Immunohistochemical analysis of each of these proteins was therefore performed on ovarian samples from nine adult women, most (n = 8) with BRCA1 and/or BRCA2 mutations undergoing prophylactic bilateral oophorectomy. Pictures were taken of the theca layer of secondary, small (<3000 µm), and large (>3000 µm) antral follicles and corpora lutea at 100× magnification. ImageJ software was used to analyze the surface area and expression intensity of each protein at each stage, known as the staining index. Overall, our data showed that LH/CG-R, perilipin-2, and StAR expression increased in the course of folliculogenesis and luteinization. Similarly, cytochrome P450 11A1, cytochrome P450c17, 3 beta-hydroxysteroid dehydrogenase/delta 5 -> 4-isomerase type 1, and 3 beta-hydroxysteroid dehydrogenase/delta 5 -> 4-isomerase type 2 expression were substantially elevated in TCs during folliculogenesis, evidenced by their coordinated action in terms of area covered and expression intensity. This study, conducted for the first time on human ovarian tissue, contributes to localizing and quantifying expression of key steroidogenic proteins at both intracellular and tissue levels. These findings may shed new light on pathological conditions involving the human ovary, such as androgen-secreting tumors of the ovary and other disorders associated with ovarian TCs in patients with polycystic ovary syndrome.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Perilipina-2/metabolismo , Fosfoproteínas/metabolismo , Receptores do LH/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Células Tecais/metabolismo , Adulto , Feminino , Humanos
13.
Arch Biochem Biophys ; 694: 108596, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980349

RESUMO

Seven of the 57 human cytochrome P450 (P450) enzymes are mitochondrial and carry out important reactions with steroids and vitamins A and D. These seven P450s utilize an electron transport chain that includes NADPH, NADPH-adrenodoxin reductase (AdR), and adrenodoxin (Adx) instead of the diflavin NADPH-P450 reductase (POR) used by the other P450s in the endoplasmic reticulum. Although numerous studies have been published involving mitochondrial P450 systems, the experimental conditions vary considerably. We compared human Adx and bovine Adx, a commonly used component, and found very similar catalytic activities in reactions catalyzed by human P450s 11B2, 27A1, and 27C1. Binding constants of 6-200 nM were estimated for Adx binding to these P450s using microscale thermophoresis. All P450 catalytic reactions were saturated at 10 µM Adx, and higher concentrations were not inhibitory up to at least 50 µM. Collectively these studies demonstrate the tight binding of Adx (both human and bovine) to AdR and to several mitochondrial P450s and provide guidance for optimization of Adx-dependent P450 reactions.


Assuntos
Adrenodoxina/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Catálise , Bovinos , Ferredoxina-NADP Redutase/metabolismo , Humanos , Ligação Proteica , Termodinâmica
14.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207830

RESUMO

Preimplantation embryo manipulations during standard assisted reproductive technologies (ART) have significant repercussions on offspring. However, few studies to date have investigated the potential long-term outcomes associated with the vitrification procedure. Here, we performed an experiment to unravel the particular effects related to stress induced by embryo transfer and vitrification techniques on offspring phenotype from the foetal period through to prepuberal age, using a rabbit model. In addition, the focus was extended to the liver function at prepuberal age. We showed that, compared to naturally conceived animals (NC), offspring derived after embryo exposure to the transfer procedure (FT) or cryopreservation-transfer procedure (VT) exhibited variation in growth and body weight from foetal life to prepuberal age. Strikingly, we found a nonlinear relationship between FT and VT stressors, most of which were already present in the FT animals. Furthermore, we displayed evidence of variation in liver function at prepuberal age, most of which occurred in both FT and VT animals. The present major novel finding includes a significant alteration of the steroid biosynthesis profile. In summary, here we provide that embryonic manipulation during the vitrification process is linked with embryo phenotypic adaptation detected from foetal life to prepuberal age and suggests that this phenotypic variation may be associated, to a great extent, with the effect of embryo transfer.


Assuntos
Colesterol/biossíntese , Criopreservação , Transferência Embrionária , Embrião de Mamíferos/metabolismo , Fígado/metabolismo , Animais , Feminino , Coelhos
15.
BMC Genomics ; 20(1): 863, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729950

RESUMO

BACKGROUND: Intramuscular fat (IMF) is one of the most important factors positively associated with meat quality. Triglycerides (TGs), as the main component of IMF, play an essential role in muscle lipid metabolism. This transcriptome analysis of pectoralis muscle tissue aimed to identify functional genes and biological pathways likely contributing to the extreme differences in the TG content of broiler chickens. RESULTS: The study included Jingxing-Huang broilers that were significantly different in TG content (5.81 mg/g and 2.26 mg/g, p < 0.01) and deposition of cholesterol also showed the same trend. This RNA sequencing analysis was performed on pectoralis muscle samples from the higher TG content group (HTG) and the lower TG content group (LTG) chickens. A total of 1200 differentially expressed genes (DEGs) were identified between two groups, of which 59 DEGs were related to TG and steroid metabolism. The HTG chickens overexpressed numerous genes related to adipogenesis and lipogenesis in pectoralis muscle tissue, including the key genes ADIPOQ, CD36, FABP4, FABP5, LPL, SCD, PLIN1, CIDEC and PPARG, as well as genes related to steroid biosynthesis (DHCR24, LSS, MSMO1, NSDHL and CH25H). Additionally, key pathways related to lipid storage and metabolism (the steroid biosynthesis and peroxisome proliferator activated receptor (PPAR) signaling pathway) may be the key pathways regulating differential lipid deposition between HTG group and LTG group. CONCLUSIONS: This study showed that increased TG deposition accompanying an increase in steroid synthesis in pectoralis muscle tissue. Our findings of changes in gene expression of steroid biosynthesis and PPAR signaling pathway in HTG and LTG chickens provide insight into genetic mechanisms involved in different lipid deposition patterns in pectoralis muscle tissue.


Assuntos
Proteínas Aviárias/genética , Colesterol/biossíntese , Metabolismo dos Lipídeos/genética , Carne/análise , Músculos Peitorais/metabolismo , Transcriptoma , Triglicerídeos/biossíntese , Tecido Adiposo/metabolismo , Animais , Proteínas Aviárias/classificação , Proteínas Aviárias/metabolismo , Galinhas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Esteroides/biossíntese
16.
Biochem Biophys Res Commun ; 509(2): 476-482, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595381

RESUMO

Dysregulation of steroid biosynthesis has been implicated in the pathophysiology of a variety of cancers. One such common malignancy in women is breast cancer that is frequently promoted by estrogen overproduction. All steroid hormones are made from cholesterol, and the rate-limiting step in steroid biosynthesis is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Whereas the involvement of StAR in the regulation steroid hormone biosynthesis is well established, its association to breast cancer remains obscure. Herein, we report that estrogen receptor positive breast cancer cell lines (MCF7, MDA-MB-361, and T-47D) displayed aberrant high expression of the StAR protein, concomitant with 17ß-estradiol (E2) synthesis, when compared their levels with normal mammary epithelial (MCF10A and MCF12F) and triple negative breast cancer (MDA-MB-468, MDA-MB-231, and BT-549) cells. StAR was identified as a novel acetylated protein in MCF7 cells, in which liquid chromatography-tandem mass spectrometry analysis identified seven StAR acetyl lysine residues under basal and in response to histone deacetylase (HDAC) inhibition. A number of HDAC inhibitors were capable of diminishing StAR expression and E2 synthesis in MCF7 cells. The validity of StAR protein acetylation and its correlation to HDAC inhibition mediated steroid synthesis was demonstrated in adrenocortical tumor H295R cells. These findings provide novel insights that StAR protein is abundantly expressed in the most prevalent hormone sensitive breast cancer subtype, wherein inhibition of HDACs altered StAR acetylation patterns and decreased E2 levels, which may have important therapeutic implications in the prevention and treatment of this devastating disease.


Assuntos
Neoplasias da Mama/patologia , Fosfoproteínas/análise , Acetilação/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Estrogênios/análise , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células MCF-7 , Regulação para Cima/efeitos dos fármacos
17.
J Biol Chem ; 292(26): 10767-10778, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28539365

RESUMO

Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12 variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37-13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C-H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.


Assuntos
Hiperplasia Suprarrenal Congênita/enzimologia , Mutação , Esteroide 21-Hidroxilase/química , Hiperplasia Suprarrenal Congênita/genética , Dicroísmo Circular , Citocromos b5/química , Citocromos b5/genética , Citocromos b5/metabolismo , Medição da Troca de Deutério , Estabilidade Enzimática , Temperatura Alta , Humanos , Domínios Proteicos , Espectrofotometria Ultravioleta , Esteroide 21-Hidroxilase/genética , Esteroide 21-Hidroxilase/metabolismo
18.
Funct Integr Genomics ; 18(3): 327-339, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532338

RESUMO

The Chinese tongue sole (Cynoglossus semilaevis) is a typical female heterogamete species that exhibits female-biased sexual size dimorphism, which has severely hindered the sustainable development of the species in aquaculture. In the present study, four important somatotropic and reproductive tissues including brain, pituitary, liver, and gonad from 15 females and 15 males were used for transcriptome analysis via RNA-seq. A mean of 37,533,991 high-quality clean reads was obtained from each library and 806, 1482, 818, and 14,695 differentially expressed genes in female and male were identified from the brain, pituitary, liver, and gonad, respectively (fold change ≥ 2 and q < 0.05). Enrichment analyses of GO terms and KEGG pathways showed that nucleic acid-binding transcription factor activity, G-protein-coupled receptor activity, MAPK signaling pathway, steroid biosynthesis, and neuroactive ligand-receptor interaction may be involved in the sexual growth differences. Furthermore, via weighted gene co-expression network analyses, two modules (yellowgreen and salmon4) were identified to be significantly positive-correlated with female-biased sexual size dimorphism. An illustrated network map drawn by these two modules enabled the identification of a series of hub genes, including nipped-B-like protein A (nipbla), transcriptional activator protein Pur-beta-like (purb), and BDNF/NT-3 growth factors receptor (ntrk2). Detailed functional investigation of these networks and hub genes will further improve our understanding of the underlying molecular mechanism of sexual size dimorphism in fish.


Assuntos
Tamanho Corporal/genética , Peixes/genética , Redes Reguladoras de Genes , Caracteres Sexuais , Transcriptoma , Animais , Feminino , Peixes/crescimento & desenvolvimento , Masculino
19.
Gen Comp Endocrinol ; 247: 107-115, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126345

RESUMO

The goal of this study was to identify whether Pacific hagfish (Eptatretus stoutii) possess glucocorticoid and mineralocorticoid responses and to examine the potential role(s) of four key steroids in these responses. Pacific hagfish were injected with varying amounts of cortisol, corticosterone or 11-deoxycorticosterone (DOC) using coconut oil implants and plasma glucose and gill total-ATPase activity were monitored as indices of glucocorticoid and mineralocorticoid responses. Furthermore, we also monitored plasma glucose and 11-deoxycortisol (11-DOC) levels following exhaustive stress (30 min of agitation) or following repeated infusion with SO42-. There were no changes in gill total-ATPase following implantation with any steroid, with only very small statistical increases in plasma glucose noted in hagfish implanted with either DOC (at 20 and 200mgkg-1 at 7 and 4days post-injection, respectively) or corticosterone (at 100mgkg-1 at 7days post-injection). Following exhaustive stress, hagfish displayed a large and sustained increase in plasma glucose. Repeated infusion of SO42- into hagfish caused increases in both plasma glucose levels and SO42- excretion rate suggesting a regulated glucocorticoid and mineralocorticoid response. However, animals under either condition did not show any significant increases in plasma 11-DOC concentrations. Our results suggest that while there are active glucocorticoid and mineralocorticoid responses in hagfish, 11-DOC does not appear to be involved and the identity and primary function of the steroid in hagfish remains to be elucidated.


Assuntos
Glicemia/metabolismo , Cortodoxona/metabolismo , Feiticeiras (Peixe)/fisiologia , Sulfatos/metabolismo , Animais , Vias Biossintéticas , Óleo de Coco , Corticosterona/biossíntese , Óleos de Plantas/farmacologia , Estresse Fisiológico , Sulfatos/sangue
20.
Int J Mol Sci ; 18(12)2017 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-29232835

RESUMO

Because of the deep involvement of granulosa cells in the processes surrounding the cycles of menstruation and reproduction, there is a great need for a deeper understanding of the ways in which they function during the various stages of those cycles. One of the main ways in which the granulosa cells influence the numerous sex associated processes is hormonal interaction. Expression of steroid sex hormones influences a range of both primary and secondary sexual characteristics, as well as regulate the processes of oogenesis, folliculogenesis, ovulation, and pregnancy. Understanding of the exact molecular mechanisms underlying those processes could not only provide us with deep insight into the regulation of the reproductive cycle, but also create new clinical advantages in detection and treatment of various diseases associated with sex hormone abnormalities. We have used the microarray approach validated by RT-qPCR, to analyze the patterns of gene expression in primary cultures of human granulosa cells at days 1, 7, 15, and 30 of said cultures. We have especially focused on genes belonging to ontology groups associated with steroid biosynthesis and metabolism, namely "Regulation of steroid biosynthesis process" and "Regulation of steroid metabolic process". Eleven genes have been chosen, as they exhibited major change under a culture condition. Out of those, ten genes, namely STAR, SCAP, POR, SREBF1, GFI1, SEC14L2, STARD4, INSIG1, DHCR7, and IL1B, belong to both groups. Patterns of expression of those genes were analyzed, along with brief description of their functions. That analysis helped us achieve a better understanding of the exact molecular processes underlying steroid biosynthesis and metabolism in human granulosa cells.


Assuntos
Técnicas de Cultura de Células/métodos , Perfilação da Expressão Gênica/métodos , Células da Granulosa/citologia , Redes e Vias Metabólicas , Esteroides/biossíntese , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células da Granulosa/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA