Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ann Bot ; 116(2): 237-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26105187

RESUMO

BACKGROUND AND AIMS: Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. METHODS: Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. KEY RESULTS: In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. CONCLUSIONS: The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots.


Assuntos
Alumínio/farmacologia , Manganês/metabolismo , Manganês/toxicidade , Oryza/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Extratos Vegetais/química , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Soluções , Espectrometria por Raios X
2.
Biosens Bioelectron ; 220: 114901, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410157

RESUMO

Laser-excited terahertz emission microscopy (LTEM) has exhibited great potential for studying the dynamic physical properties of various materials and device evaluation. In this study, an up-to-date version of LTEM, the terahertz chemical microscopy, was developed for biochemical and chemical imaging and sensing. By functionalizing a terahertz semiconductor emitter with an ion-sensitive membrane, a DNA aptamer, and a specific polymer, the change in the terahertz signal amplitude attributed to the surface electrical potential change was successfully detected. Accordingly, the measurement of calcium ions (Ca2+), stress biomarker cortisol, and 2, 4, 6-trinitrotoluene (TNT) explosive was achieved. Measured of charged Ca2+ was via the change in the electrical potential of the ion-sensitive membrane with ion accumulation. For non-charged cortisol and TNT measurements, the surface potential change was recorded by the conformational change of the negatively charged DNA aptamer bound to cortisol and the charge-transfer complex formation between TNT and polyethylenimine polymer, respectively. Moreover, the specificity of this sensing approach was demonstrated by molecular docking and measuring the interfering substances such as sodium ions, potassium ions, brain chemicals histamine and dopamine, and TNT analogues. The results showed that the developed multifunctional terahertz microscopy technique can be used for trace biochemical and chemical sensing via visualization of the terahertz amplitude distribution.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Trinitrotolueno , Hidrocortisona , Simulação de Acoplamento Molecular , Microscopia Confocal , Polímeros
3.
Toxics ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202264

RESUMO

Arsenic is a metalloid that is highly toxic to living organisms in the environment. In this study, toxicity caused by inorganic arsenate (As(V)) to terrestrial plants, such as barley Hordeum vulgare and wheat Triticum aestivum, was predicted using the existing biotic ligand model (BLM) for bioluminescent Aliivibrio fischeri via interspecies extrapolation. Concurrently, the concept of cell plasma membrane electrical potential (Ψ0) was incorporated into the extrapolated BLM to improve the model predictability in the presence of major cations such as Ca2+. The 50% effective As(V) toxicity (EC50{HAsO42-}) to H. vulgare decreased from 45.1 ± 4.34 to 15.0 ± 2.60 µM as Ca2+ concentration increased from 0.2 to 20 mM owing to the accumulation of H2AsO4- and HAsO42- on the cell membrane surface. The extrapolated BLM, which only considered inherent sensitivity, explained well the alteration of As(V) toxicity to H. vulgare and T. aestivum by Ca2+ with in an order of magnitude, when considering a linear relationship between Ψ0 and EC50{HAsO42-}.

4.
Materials (Basel) ; 15(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009155

RESUMO

The ability of cells to adhere to substrates is an important factor for the effectiveness of biotechnologies and bioimplants. This research demonstrates that the statistical distribution of the sizes of the cells (Saccharomyces cerevisiae) attached to the substrate surface correlates with the statistical distribution of electrical potential on the substrate's surface. Hypothetically, this behavior should be taken into consideration during the processing of surfaces when cell adhesion based on cell size is required.

5.
Materials (Basel) ; 11(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890754

RESUMO

Mesenchymal stem cells (MSCs) and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP) surfaces and their electrical potential (EP) at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs) or prenatal stromal cells from the human lung (HLPSCs) were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA