Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Therm Biol ; 119: 103772, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145612

RESUMO

Climate change is increasingly affecting human well-being and will inevitably impact on occupational sectors in terms of costs, productivity, workers' health and injuries. Among the cooling garment developed to reduce heat strain, the ventilation jacket could be considered for possible use in workplaces, as it is wearable without limiting the user's mobility and autonomy. In this study, simulations with a sweating manikin are carried out to investigate the effects of a short-sleeved ventilation jacket on human thermophysiological responses in a warm-dry scenario. Simulations were performed in a climatic chamber (air temperature = 30.1 °C; air velocity = 0.29 m/s; relative humidity = 30.0 %), considering two constant levels of metabolic rate M (M1 = 2.4 MET; M2 = 3.2 MET), a sequence of these two (Work), and three levels of fan velocities (lf = 0; lf=2; lf=4). The results revealed a more evident impact on the mean skin temperature (Tsk) compared to the rectal temperature (Tre), with significant decreases (compared to fan-off) at all M levels, for Tsk from the beginning and for Tre from the 61st minute. Skin temperatures of the torso zones decreased significantly (compared to fan-off) at all M levels, and a greater drop was registered for the Back. The fans at the highest level (lf=4) were significantly effective in improving whole-body and local thermal sensations when compared to fan-off, at all M levels. At the intermediate level (lf=2), the statistical significance varied with thermal zone, M and time interval considered. The results of the simulations also showed that the Lower Torso needs to be monitored at M2 level, as the drop in skin temperature could lead to local overcooling and thermal discomfort. Simulations showed the potential effectiveness of the ventilation jacket, but human trials are needed to verify its cooling power in real working conditions.


Assuntos
Regulação da Temperatura Corporal , Sudorese , Humanos , Regulação da Temperatura Corporal/fisiologia , Temperatura Alta , Manequins , Temperatura Cutânea , Condições de Trabalho , Local de Trabalho , Respiração
2.
Environ Res ; 212(Pt D): 113475, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588774

RESUMO

The increase in average seasonal temperatures has an impact in the occupational field, especially for those sectors whose work activities are performed outdoors (agricultural, road and construction sectors). Among the adaptation measures and solutions developed to counteract occupational heat strain, personal cooling garments represent a wearable technology designed to remove heat from the human body, enhancing human performance. This study aims to investigate the effectiveness and the cooling power of a specific cooling garment, i.e. a ventilation jacket, by quantifying the evaporative heat losses and the total evaporative resistance both when worn alone and in combination with a work ensemble, at three adjustments of air ventilation speed. Standardised "wet" tests in a climatic chamber were performed on a sweating manikin in isothermal conditions considering three clothing ensembles (single jacket, work ensemble and a combination of both) and three adjustments of fan velocity. Results showed a significant increase (p < 0.001) in evaporative heat loss values when the fan velocity increased, particularly within the trunk zones for all the considered clothing ensembles, showing that fans enhanced the dissipation by evaporation. The cooling power, quantified in terms of percent changes of evaporative heat loss, showed values exceeding 100% when fans were on, in respect to the condition of fans-off, for the trunk zones except for the Chest. A significant (p < 0.01) decrease (up to 42.3%) in the total evaporative resistance values of the jacket, coupled with the work ensemble, was found compared to the fans-off condition. Results confirmed and quantified the cooling effect of the ventilation jacket which enhanced the evaporative heat losses of the trunk zones, helping the body to dissipate heat and showing the potential for a heat adaptation measure to be developed.


Assuntos
Temperatura Alta , Dispositivos Eletrônicos Vestíveis , Regulação da Temperatura Corporal , Humanos , Roupa de Proteção , Sudorese , Local de Trabalho
3.
J Therm Biol ; 70(Pt A): 69-76, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29074028

RESUMO

Currently, no published standard and research work have addressed the basic requirements on knitted fabric 'skin' on sweating manikins. In this study, we performed 252 experiments to investigate the influence of fabric thickness and material on the apparent 'wet' conductive (or effective) thermal resistance of the fabric 'skin' using a 'Newton' manikin. Four types of cotton fabric 'skin' (fabric thickness: 0.38, 0.54, 0.92 and 1.43mm) and three types of polyester fabric 'skin' (fabric thickness: 0.41, 0.54 and 1.0mm) were selected and their 'wet' conductive thermal resistance was determined. Empirical equations were also developed for each fabric 'skin' to predict wet fabric 'skin' surface temperatures. It was found that both fabric thickness and material significantly affected the apparent 'wet' conductive thermal resistance. Clothing total evaporative resistance determined using thin fabric 'skin' (e.g., CO1, CO2) was normally lower than that determined using thick fabric 'skin' (e.g., CO4). Besides, synthetic fabric 'skin' tended to have a larger apparent 'wet' conductive thermal resistance than the cotton fabric 'skin' due to a smaller amount of moisture contained. Hence, there is a great need to standardize the fabric 'skin' to eliminate the influence of fabric 'skin' on the measurement of clothing evaporative resistance by means of a sweating manikin.


Assuntos
Vestuário/normas , Sudorese , Têxteis/normas , Temperatura Corporal , Fibra de Algodão , Temperatura Alta , Humanos , Umidade , Manequins , Poliésteres
4.
Int J Biometeorol ; 60(4): 481-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26150329

RESUMO

The ASTM F2370 (2010) is the only standard with regard to measurement of clothing real evaporative resistance by means of a sweating manikin. However, the sweating set-point is not recommended in the standard. In this study, the effect of sweating rate on clothing real evaporative resistance was investigated on a 34-zone "Newton" sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Four different sweating set rates (i.e., all segments had a sweating rate of 400, 800, 1200 ml/hr ∙ m(2), respectively, and different sweating rates were assigned to different segments) were applied to determine the clothing real evaporative resistance of five clothing ensembles and the boundary air layer. The results indicated that the sweating rate did not affect the real evaporative resistance of clothing ensembles with the absence of strong moisture absorbent layers. For the clothing ensemble with tight cotton underwear, a sweating rate of lower than 400 ml/hr ∙ m(2) is not recommended. This is mainly because the wet fabric "skin" might not be fully saturated and thus led to a lower evaporative heat loss and thereby a higher real evaporative resistance. For vapor permeable clothing, the real evaporative resistance determined in the so-called isothermal condition should be corrected before being used in thermal comfort or heat strain models. However, the reduction of wet thermal insulation due to moisture absorption in different test scenarios had a limited contribution to the effect of sweating rate on the real evaporative resistance.


Assuntos
Vestuário , Sudorese , Temperatura , Humanos , Manequins , Modelos Teóricos , Volatilização
5.
EXCLI J ; 22: 583-594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636023

RESUMO

Thermal comfort is defined as the user's sensation of thermal well-being. This sensation can be modified by extreme environmental conditions changing the body temperature of the user. Different mechanisms, the thermoregulatory system itself or an external textile system, are required to allow the body to return to their state of well-being. A cooling vest is an example of a smart garment that helps to reduce the user's body temperature in situations of heat stress. There are two different standards to evaluate the performance of this type of clothing: the ASTM F2371-16 standard that uses a thermal manikin and the ASTM F2300-10 standard that uses human subjects for the evaluation. There is a need for simple, objective and affordable tests to evaluate the thermal comfort associated with personal protective equipment use. The aim of this work is to develop a new testing method that combines a thermal manikin with a simulation software and allows to study physiological parameters of a human subject in the body of the thermal manikin.

6.
Appl Ergon ; 45(2): 300-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23664244

RESUMO

The main objective of this study is to establish an approach for measuring the dry and evaporative heat dissipation cricket helmets. A range of cricket helmets has been tested using a sweating manikin within a controlled climatic chamber. The thermal manikin experiments were conducted in two stages, namely the (i) dry test and (ii) wet test. The ambient air temperature for the dry tests was controlled to ~ 23 °C, and the mean skin temperatures averaged ~ 35 °C. The thermal insulation value measured for the manikin with helmet ensemble ranged from 1.0 to 1.2 clo. The results showed that among the five cricket helmets, the Masuri helmet offered slightly more thermal insulation while the Elite helmet offered the least. However, under the dry laboratory conditions and with minimal air movement (air velocity = 0.08 ± 0.01 ms(-1)), small differences exist between the thermal resistance values for the tested helmets. The wet tests were conducted in an isothermal condition, with an ambient and skin mean temperatures averaged ~ 35 °C, the evaporative resistance, Ret, varied between 36 and 60 m(2) Pa W(-1). These large variations in evaporative heat dissipation values are due to the presence of a thick layer of comfort lining in certain helmet designs. This finding suggests that the type and design of padding may influence the rate of evaporative heat dissipation from the head and face; hence the type of material and thickness of the padding is critical for the effectiveness of evaporative heat loss and comfort of the wearer. Issues for further investigations in field trials are discussed.


Assuntos
Dispositivos de Proteção da Cabeça , Equipamentos Esportivos , Regulação da Temperatura Corporal , Desenho de Equipamento , Temperatura Alta , Humanos , Manequins , Teste de Materiais , Sudorese , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA