Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurosci ; 43(21): 3807-3824, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37185099

RESUMO

Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions, such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in presynaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions. However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca2+ imaging data indicate that the SphK1/S1P axis may be important for presynaptic Ca2+ increases during prolonged stimulations by regulating the Ca2+ permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis.SIGNIFICANCE STATEMENT Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abundant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addition to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves regulation of Ca2+ influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P axis in brain functions under physiological and pathologic conditions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool) , Vesículas Sinápticas , Masculino , Feminino , Camundongos , Animais , Vesículas Sinápticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo , Endocitose , Lisofosfolipídeos/metabolismo , Canais de Cátion TRPC
2.
J Biol Chem ; 299(9): 105091, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516240

RESUMO

α-Synuclein and family members ß- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αßγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.


Assuntos
Clatrina , Proteínas Monoméricas de Montagem de Clatrina , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Clatrina/química , Clatrina/metabolismo , Endocitose , Microscopia Imunoeletrônica , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Transporte Proteico , Técnicas In Vitro , Fosfatidilinositol 4,5-Difosfato/metabolismo , Encéfalo/citologia , Vesículas Revestidas por Clatrina/metabolismo
3.
J Biol Chem ; 296: 100166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33478937

RESUMO

ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder, and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders. Here, we examined the biochemical activity of ABCA13 using HEK293 cells transfected with mouse ABCA13. The expression of ABCA13 induced the internalization of cholesterol and gangliosides from the plasma membrane to intracellular vesicles. Cholesterol internalization by ABCA13 required the long N-terminal region and ATP hydrolysis. To examine the physiological roles of ABCA13, we generated Abca13 KO mice using CRISPR/Cas and found that these mice exhibited deficits of prepulse inhibition. Vesicular cholesterol accumulation and synaptic vesicle endocytosis were impaired in primary cultures of Abca13 KO cortical neurons. Furthermore, mutations in ABCA13 gene associated with psychiatric disorders disrupted the protein's subcellular localization and impaired cholesterol trafficking. These findings suggest that ABCA13 accelerates cholesterol internalization by endocytic retrograde transport in neurons and that loss of this function is associated with the pathophysiology of psychiatric disorders.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Colesterol/metabolismo , Endocitose/genética , Neurônios/metabolismo , Inibição Pré-Pulso , Transportadores de Cassetes de Ligação de ATP/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Modelos Animais de Doenças , Gangliosídeos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Mutação , Neurônios/patologia , Cultura Primária de Células , Transporte Proteico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Transgenes
4.
Proc Natl Acad Sci U S A ; 115(21): 5576-5581, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735704

RESUMO

Recently identified Parkinson's disease (PD) genes involved in synaptic vesicle endocytosis, such as DNAJC6 (auxilin), have further implicated synaptic dysfunction in PD pathogenesis. However, how synaptic dysfunction contributes to the vulnerability of human dopaminergic neurons has not been previously explored. Here, we demonstrate that commonly mutated, PD-linked leucine-rich repeat kinase 2 (LRRK2) mediates the phosphorylation of auxilin in its clathrin-binding domain at Ser627. Kinase activity-dependent LRRK2 phosphorylation of auxilin led to differential clathrin binding, resulting in disrupted synaptic vesicle endocytosis and decreased synaptic vesicle density in LRRK2 patient-derived dopaminergic neurons. Moreover, impaired synaptic vesicle endocytosis contributed to the accumulation of oxidized dopamine that in turn mediated pathogenic effects such as decreased glucocerebrosidase activity and increased α-synuclein in mutant LRRK2 neurons. Importantly, these pathogenic phenotypes were partially attenuated by restoring auxilin function in mutant LRRK2 dopaminergic neurons. Together, this work suggests that mutant LRRK2 disrupts synaptic vesicle endocytosis, leading to altered dopamine metabolism and dopamine-mediated toxic effects in patient-derived dopaminergic neurons.


Assuntos
Auxilinas/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/patologia , Vesículas Sinápticas/patologia , Auxilinas/genética , Células Cultivadas , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Vesículas Sinápticas/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(7): 1629-1634, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386384

RESUMO

Mutations in DJ-1 (PARK7) are a known cause of early-onset autosomal recessive Parkinson's disease (PD). Accumulating evidence indicates that abnormalities of synaptic vesicle trafficking underlie the pathophysiological mechanism of PD. In the present study, we explored whether DJ-1 is involved in CNS synaptic function. DJ-1 deficiency impaired synaptic vesicle endocytosis and reavailability without inducing structural alterations in synapses. Familial mutants of DJ-1 (M26I, E64D, and L166P) were unable to rescue defective endocytosis of synaptic vesicles, whereas WT DJ-1 expression completely restored endocytic function in DJ-1 KO neurons. The defective synaptic endocytosis shown in DJ-1 KO neurons may be attributable to alterations in membrane cholesterol level. Thus, DJ-1 appears essential for synaptic vesicle endocytosis and reavailability, and impairment of this function by familial mutants of DJ-1 may be related to the pathogenesis of PD.


Assuntos
Endocitose/fisiologia , Terminações Nervosas/patologia , Proteína Desglicase DJ-1/fisiologia , Sinapses/patologia , Vesículas Sinápticas/patologia , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Mutação , Terminações Nervosas/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo
6.
Neuroimmunomodulation ; 23(5-6): 332-344, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28395287

RESUMO

OBJECTIVE: Mesial temporal lobe epilepsy (MTLE) is the most common type of refractory epilepsy. It is often associated with hippocampal sclerosis, which is histopathologically characterized by selective neuron loss, mossy fiber sprouting, and synapse reconstruction, and is the primary cause of refractory epilepsy. Its mechanism has not been fully elucidated. Substantial evidence now supports that inflammatory pathways are activated in epilepsy foci. We have confirmed that the interleukin-1ß (IL-1ß) level is involved in the epileptogenesis of MTLE, and we further investigated how it works in its chronicity in this study. METHODS: The MTLE model was induced by pilocarpine, and Western blot and co-immunoprecipitation were used to detect proteins related to the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway in the hippocampi of MTLE rats and MTLE children. Meanwhile, primary hippocampal neurons were cultured and transfected by lentivirus, and the same methods were used to test the related protein expression; fluorescent dye FM4-64 was used to measure synaptic vesicle endocytosis (SVE) of neurons. RESULTS: We revealed that mTOR is continuously activated in the rat MTLE model and children with MTLE, and it correlated with the IL-1ß level. We further proved that IL-1ß activates neurons via the PI3K/Akt/mTOR signaling pathway, accompanied by the upregulation of MAP2 and the enhancement of SVE in hippocampal neurons. CONCLUSION: Our findings suggest that IL-1ß can activate mTOR, followed by activated neurons, which is critical in the pathogenesis of MTLE chronicity. These findings contribute to the understanding of the pathogenesis of MTLE, and targeting inflammation modulators in MTLE may provide new pathways for therapy of refractory epilepsy.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais/fisiologia , Animais , Anticonvulsivantes/farmacologia , Células Cultivadas , Criança , Diazepam/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Interleucina-1beta/farmacologia , Masculino , Agonistas Muscarínicos/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pilocarpina/toxicidade , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
7.
Traffic ; 14(12): 1272-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025110

RESUMO

Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ~ 15 µM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 µM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo™ compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37-fold improvement in potency over dynasore for liposome-stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36-fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin-dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 µM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin-independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity-dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non-specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin-mediated endocytosis.


Assuntos
Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Hidrazonas/farmacologia , Naftóis/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Toxina da Cólera/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Dinaminas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Naftóis/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Ovinos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Transferrinas/metabolismo
8.
J Neurosci ; 34(30): 10085-95, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057210

RESUMO

Secretory carrier membrane protein 5 (SCAMP5), a recently identified candidate gene for autism, is brain specific and highly abundant in synaptic vesicles (SVs), but its function is currently unknown. Here, we found that knockdown (KD) of endogenous SCAMP5 by SCAMP5-specific shRNAs in cultured rat hippocampal neurons resulted in a reduction in total vesicle pool size as well as in recycling pool size, but the recycling/resting pool ratio was significantly increased. SCAMP5 KD slowed endocytosis after stimulation, but impaired it severely during strong stimulation. We also found that KD dramatically lowered the threshold of activity at which SV endocytosis became unable to compensate for the ongoing exocytosis occurring during a stimulus. Reintroducing shRNA-resistant SCAMP5 reversed these endocytic defects. Therefore, our results suggest that SCAMP5 functions during high neuronal activity when a heavy load is imposed on endocytosis. Our data also raise the possibility that the reduction in expression of SCAMP5 in autistic patients may be related to the synaptic dysfunction observed in autism.


Assuntos
Proteínas de Transporte/fisiologia , Endocitose/fisiologia , Proteínas de Membrana/fisiologia , Neurônios/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Proteínas de Transporte/genética , Endocitose/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Masculino , Proteínas de Membrana/genética , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/genética
9.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790502

RESUMO

Dynamin 1 (Dyn1) has two major splice variants, xA and xB, with unique C-terminal extensions of 20 and 7 amino acids, respectively. Of these, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that the long tail variant, Dyn1xA, achieves this localization by preferentially binding to Endophilin A through a newly defined Class II binding site overlapping with its extension, at a site spanning the splice boundary. Endophilin binds this site at higher affinity than the previously reported site, and this affinity is determined by amino acids outside the binding sites acting as long distance elements within the xA tail. Their interaction is regulated by the phosphorylation state of two serine residues specific to the xA variant. Dyn1xA and Endophilin colocalize in patches near the active zone of synapses. Mutations selectively disrupting Endophilin binding to the long extension cause Dyn1xA mislocalization along axons. In these mutants, endocytic pits are stalled on the plasma membrane during ultrafast endocytosis. These data suggest that the specificity for ultrafast endocytosis is defined by the phospho-regulated interaction of Endophilin A through a newly identified site of Dyn1xA's long tail.

10.
Biomolecules ; 12(4)2022 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-35454096

RESUMO

α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Alzheimer's Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood-brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Lipossomos , Nanopartículas , Doença de Parkinson/metabolismo , Terminações Pré-Sinápticas/metabolismo , alfa-Sinucleína/metabolismo
11.
Front Cell Neurosci ; 15: 713693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759800

RESUMO

At mammalian glutamatergic synapses, most basic elements of synaptic transmission have been shown to be modulated by specific transsynaptic adhesion complexes. However, although crucial for synapse homeostasis, a physiological regulation of synaptic vesicle endocytosis by adhesion molecules has not been firmly established. The homophilic adhesion protein N-cadherin is localized at the peri-active zone, where the highly temperature-dependent endocytosis of vesicles occurs. Here, we demonstrate an important modulatory role of N-cadherin in endocytosis at near physiological temperature by synaptophysin-pHluorin imaging. Different modes of endocytosis including bulk endocytosis were dependent on N-cadherin expression and function. N-cadherin modulation might be mediated by actin filaments because actin polymerization ameliorated the knockout-induced endocytosis defect. Using super-resolution imaging, we found strong recruitment of N-cadherin to glutamatergic synapses upon massive vesicle release, which might in turn enhance vesicle endocytosis. This provides a novel, adhesion protein-mediated mechanism for efficient coupling of exo- and endocytosis.

12.
Mol Brain ; 14(1): 53, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726791

RESUMO

In addition to providing structural support, caveolin-1 (Cav1), a component of lipid rafts, including caveolae, in the plasma membrane, is involved in various cellular mechanisms, including signal transduction. Although pre-synaptic membrane dynamics and trafficking are essential cellular processes during synaptic vesicle exocytosis/synaptic transmission and synaptic vesicle endocytosis/synaptic retrieval, little is known about the involvement of Cav1 in synaptic vesicle dynamics. Here we demonstrate that synaptic vesicle exocytosis is significantly impaired in Cav1-knockdown (Cav1-KD) neurons. Specifically, the size of the synaptic recycled vesicle pool is modestly decreased in Cav1-KD synapses and the kinetics of synaptic vesicle endocytosis are somewhat slowed. Notably, neurons rescued by triple mutants of Cav1 lacking palmitoylation sites mutants show impairments in both synaptic transmission and retrieval. Collectively, our findings implicate Cav1 in activity-driven synaptic vesicle dynamics-both exocytosis and endocytosis-and demonstrate that palmitoylation of Cav1 is important for this activity.


Assuntos
Caveolina 1/deficiência , Hipocampo/citologia , Proteínas do Tecido Nervoso/deficiência , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Caveolina 1/fisiologia , Células Cultivadas , Exocitose/fisiologia , Microdomínios da Membrana , Mutação , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Ácido Palmítico/metabolismo , Terminações Pré-Sinápticas/química , Terminações Pré-Sinápticas/fisiologia , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
13.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569930

RESUMO

Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.


Assuntos
Endocitose , Inibição Neural , Plasticidade Neuronal , Neurônios/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cromafins/metabolismo , Potenciais Pós-Sinápticos Excitadores , Feminino , Células HEK293 , Humanos , Potenciais Pós-Sinápticos Inibidores , Cinética , Masculino , Camundongos Knockout , Vesículas Sinápticas/genética , Canais de Cátion TRPM/genética
14.
Trends Neurosci ; 43(2): 77-79, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31910996

RESUMO

Synaptic vesicle fusion is coupled to swift retrieval of vesicle components from the synaptic plasma membrane. Ca2+ has been assumed to be a key mediator of this coupling. In a recent study, Orlando et al. unequivocally demonstrate that Ca2+ is not essential for synaptic vesicle retrieval.


Assuntos
Cálcio , Vesículas Sinápticas , Endocitose , Exocitose , Sinapses
15.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300871

RESUMO

Synaptic vesicle (SV) endocytosis is coupled to exocytosis to maintain SV pool size and thus neurotransmitter release. Intense stimulation induces activity-dependent bulk endocytosis (ADBE) to recapture large quantities of SV constituents in large endosomes from which SVs reform. How these consecutive processes are spatiotemporally coordinated remains unknown. Here, we show that Flower Ca2+ channel-dependent phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) compartmentalization governs control of these processes in Drosophila. Strong stimuli trigger PI(4,5)P2 microdomain formation at periactive zones. Upon exocytosis, Flower translocates from SVs to periactive zones, where it increases PI(4,5)P2 levels via Ca2+ influxes. Remarkably, PI(4,5)P2 directly enhances Flower channel activity, thereby establishing a positive feedback loop for PI(4,5)P2 microdomain compartmentalization. PI(4,5)P2 microdomains drive ADBE and SV reformation from bulk endosomes. PI(4,5)P2 further retrieves Flower to bulk endosomes, terminating endocytosis. We propose that the interplay between Flower and PI(4,5)P2 is the crucial spatiotemporal cue that couples exocytosis to ADBE and subsequent SV reformation.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila , Retroalimentação Fisiológica/fisiologia , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia
16.
Prog Brain Res ; 252: 271-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32247367

RESUMO

The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.


Assuntos
Endocitose , Endossomos/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transporte Proteico , Animais , Endocitose/fisiologia , Humanos
17.
Trends Neurosci ; 42(2): 140-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509690

RESUMO

The discovery of genetic forms of Parkinson's disease (PD) has highlighted the importance of the autophagy/lysosomal and mitochondrial/oxidative stress pathways in disease pathogenesis. However, recently identified PD-linked genes, including DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1), have also highlighted disruptions in synaptic vesicle endocytosis (SVE) as a significant contributor to disease pathogenesis. Additionally, the roles of other PD genes such as LRRK2, PRKN, and VPS35 in the regulation of SVE are beginning to emerge. Here we discuss the recent work on the contribution of dysfunctional SVE to midbrain dopaminergic neurons' selective vulnerability and highlight pathways that demonstrate the interplay of synaptic, mitochondrial, and lysosomal dysfunction in the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Endocitose , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Autofagia , Dopamina/metabolismo , Predisposição Genética para Doença , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Estresse Oxidativo , Doença de Parkinson/genética , alfa-Sinucleína/metabolismo
18.
Neurochem Int ; 129: 104474, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31129113

RESUMO

Clathrin-mediated endocytosis at the nerve terminal is dependent on assembly protein 180 (AP180) and adapter protein complex 2 (AP2). Both membrane adapter proteins bind to each other and to clathrin, to drive assembly of the clathrin coat over nascent synaptic vesicles. Using knowledge of in vivo phosphorylation sites, AP180 was mutated to determine the effect on binding. N-terminally truncated AP180 exhibited phospho-mimetic (Ser/Thr to Glu)-dependent interaction with AP2, but not clathrin. C-terminally truncated and full length phospho-mutant AP180 bound less AP2 than wild type. However, there was no difference in AP2 binding for the phospho-mimetic or phospho-deficient (Ser/Thr to Ala) AP180 mutants. Thus, the phospho-mutant approach did not provide clarity for the role of phosphorylation in AP180-AP2 binding. Clathrin exhibited a phospho-mimetic-dependent interaction with full-length AP180. Furthermore, phospho-mimetic AP180 was deficient at assembling clathrin cages. These latter discoveries support a model where AP180 phosphorylation inhibits clathrin binding and assembly.


Assuntos
Clatrina/farmacologia , Endocitose/efeitos dos fármacos , Proteínas Monoméricas de Montagem de Clatrina/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Ligação Proteica/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
19.
Front Cell Neurosci ; 12: 171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002619

RESUMO

Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

20.
Neuron ; 98(6): 1184-1197.e6, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29953872

RESUMO

Ultrafast endocytosis generates vesicles from the plasma membrane as quickly as 50 ms in hippocampal neurons following synaptic vesicle fusion. The molecular mechanism underlying the rapid maturation of these endocytic pits is not known. Here we demonstrate that synaptojanin-1, and its partner endophilin-A, function in ultrafast endocytosis. In the absence of synaptojanin or endophilin, the membrane is rapidly invaginated, but pits do not become constricted at the base. The 5-phosphatase activity of synaptojanin is involved in formation of the neck, but 4-phosphatase is not required. Nevertheless, these pits are eventually cleaved into vesicles; within a 30-s interval, synaptic endosomes form and are resolved by clathrin-mediated budding. Then synaptojanin and endophilin function at a second step to aid with the removal of clathrin coats from the regenerated vesicles. These data together suggest that synaptojanin and endophilin can mediate membrane remodeling on a millisecond timescale during ultrafast endocytosis.


Assuntos
Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Endocitose/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Monoéster Fosfórico Hidrolases/genética , Vesículas Transportadoras/metabolismo , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Celular , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endossomos/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas , Vesículas Transportadoras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA