Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446817

RESUMO

X-linked inhibitor of apoptosis protein (XIAP) exercises its biological function by locking up and inhibiting essential caspase-3, -7 and -9 toward apoptosis execution. It is overexpressed in multiple human cancers, and it plays an important role in cancer cells' death skipping. Inhibition of XIAP-BIR3 domain and caspase-9 interaction was raised as a promising strategy to restore apoptosis in malignancy treatment. However, XIAP-BIR3 antagonists also inhibit cIAP1-2 BIR3 domains, leading to serious side effects. In this study, we worked on a theoretical model that allowed us to design and optimize selective synthetic XIAP-BIR3 antagonists. Firstly, we assessed various MM-PBSA strategies to predict the XIAP-BIR3 binding affinities of synthetic ligands. Molecular dynamics simulations using hydrogen mass repartition as an additional parametrization with and without entropic term computed by the interaction entropy approach produced the best correlations. These simulations were then exploited to generate 3D pharmacophores. Following an optimization with a training dataset, five features were enough to model XIAP-BIR3 synthetic ligands binding to two hydrogen bond donors, one hydrogen bond acceptor and two hydrophobic groups. The correlation between pharmacophoric features and computed MM-PBSA free energy revealed nine residues as crucial for synthetic ligand binding: Thr308, Glu314, Trp323, Leu307, Asp309, Trp310, Gly306, Gln319 and Lys297. Ultimately, and three of them seemed interesting to use to improve XIAP-BR3 versus cIAP-BIR3 selectivity: Lys297, Thr308 and Asp309.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Humanos , Ligantes , Ligação Proteica , Simulação de Dinâmica Molecular
2.
J Enzyme Inhib Med Chem ; 31(3): 456-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25942361

RESUMO

The ubiquitin proteasome pathway is crucial in regulating many processes in the cell. Modulation of proteasome activities has emerged as a powerful strategy for potential therapies against much important pathologies. In particular, specific inhibitors may represent a useful tool for the treatment of tumors. Here, we report studies of a new series of peptide-based analogues bearing a naphthoquinone pharmacophoric unit at the C-terminal position. Some derivatives showed inhibition in the µM range of the post-acidic-like and chymotrypsin-like active sites of the proteasome.


Assuntos
Antineoplásicos/farmacologia , Dipeptídeos/farmacologia , Naftoquinonas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/síntese química , Dipeptídeos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/química , Relação Estrutura-Atividade
3.
Nat Prod Res ; 36(16): 4282-4286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34533390

RESUMO

Rhodesain is a cysteine protease crucial for the survival of Trypanosoma brucei rhodesiense, the parasite able to induce the acute lethal form of Human African Trypanosomiasis. PS-1 is a synthetic peptidyl inhibitor of rhodesain, characterised by a picomolar binding affinity (Ki = 1.1 pM). Thus, considering the well-known antiparasitic properties of quercetin, in this study, we decided to carry out drug combination studies of PS-1 and quercetin against rhodesain, according to Chou and Talalay method, which allowed us to obtain for the most relevant fa values a nearly additive effect for the reduction of rhodesain activity from 40% to 90%, thus considering a promising strategy their use in combination.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Cisteína Endopeptidases , Combinação de Medicamentos , Humanos , Quercetina/metabolismo , Quercetina/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense
4.
Front Biosci (Landmark Ed) ; 26(10): 752-764, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34719203

RESUMO

Introduction: The restriction of prolyl-protein cis/trans isomerase 1 (Pin1) activity has been shown to prevent the release of tissue factor (TF) leading to the accumulation of the latter protein within the cell. This study tested the ability of novel small molecules to inhibit Pin1, suppress TF activity and release, and induce cellular apoptosis. Methods: Four compounds were designed and synthesised based on modification of 5-(p-methoxyphenyl)-2-methylfuran-3-carbonyl amide and the outcome on MDA-MB-231 and primary cells examined. These compounds contained 3-(2-naphthyl)-D-alanine (4a), D-tryptophan (4b), D-phenylalanine (4c), and D-tyrosine (4d) at the amino-termini. Results: Treatment of cells with compound 4b and 4d reduced the cell-surface TF activity after 60 min on MDA-MB-231 cells. Incubation with compound 4d also reduced TF antigen on the cell surface and its incorporation into microvesicles, while compounds 4a and 4b significantly increased TF release. None of the four compounds significantly altered the total amount of TF antigen or TF mRNA expression. Compound 4b and 4d also suppressed the binding of Pin1 to TF-cytoplasmic domain peptide. However, compound 4d reduced while compound 4b increased the Pin1 isomerase activity. Finally, treatment with compound 4b and 4d reduced the cell numbers, increased nuclear localisation of p53, Bax protein and bax mRNA expression and induced cellular apoptosis in MDA-MB-231 but not primary endothelial cells. Conclusions: In conclusion, we have identified small molecules to regulate the function of TF within cells. Two of these compounds may prove to be beneficial in moderating TF function specifically and restrain TF-mediated tumour growth without detrimental outcomes on normal vascular cells.


Assuntos
Antineoplásicos/farmacologia , Micropartículas Derivadas de Células , Tromboplastina , Apoptose , Contagem de Células , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Tromboplastina/genética
5.
Expert Opin Ther Pat ; 29(7): 535-553, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203700

RESUMO

INTRODUCTION: Dipeptidyl peptidase 4 (DPP-4) belongs to the family of serine proteases and is involved in the degradation of GLP-1 and GIP hormones, which enhance the production and release of insulin. Targeting DPP-4 inhibitors is increasingly being considered as promising paradigms to treat type 2 diabetes mellitus and therefore DPP-4 inhibitors are being considered as promising antidiabetic drugs. AREAS COVERE: This review provides an overview of published patents describing natural and synthetic DPP-4 inhibitors from January 2015 to December 2018. EXPERT OPINION: A fair number of new synthetic and natural DPP-4 inhibitors have been reported in the last four years which describe the progress in the development of various heterocyclic scaffolds or heterocyclic hybrid compounds. As a result of this, many marketed DPP-4 inhibitors that have been approved by the appropriate governing bodies during the past decade, have been introduced as inhibitors. Molecular hybridization is an emerging idea in medicinal chemistry and therefore hybrid compounds of DPP-4 inhibitors with other DPP-4 inhibitors or with antidiabetic drugs should be formulated for a comprehensive evaluation. More detailed pharmacovigilance of DPP-4 inhibitors is required because this will address the pancreas-related adverse events as well as their impact on cardiovascular outcomes via long-term studies.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Dipeptidil Peptidase 4/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Desenho de Fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/metabolismo , Patentes como Assunto
6.
Expert Opin Ther Pat ; 29(9): 689-702, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402706

RESUMO

Introduction: Protein tyrosine phosphatase 1B (PTP1B) inhibition has been recommended as a crucial strategy to enhance insulin sensitivity in various cells and this fact is supported by human genetic data. PTP1B inhibitors improve the sensitivity of the insulin receptor and have the ability to cure insulin resistance-related diseases. In the latter years, targeting PTP1B inhibitors is being considered an attractive target to treat T2DM and therefore libraries of PTP1B inhibitors are being suggested as potent antidiabetic drugs. Areas covered: This review provides an overview of published patents from January 2015 to December 2018. The review describes the effectiveness of potent PTP1B inhibitors as pharmaceutical agents to treat type 2 diabetes. Expert opinion: Enormous developments have been made in PTP1B drug discovery which describes progress in natural products, synthetic heterocyclic scaffolds or heterocyclic hybrid compounds. Various protocols are being followed to boost the pharmacological effects of PTP1B inhibitors. Moreover these new advancements suggest that it is possible to get small-molecule PTP1B inhibitors with the required potency and selectivity. Furthermore, future endevours via an integrated strategy of using medicinal chemistry and structural biology will hopefully result in potent and selective PTP1B inhibitors as well as safer and more effective orally available drugs.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Antígenos CD/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Desenho de Fármacos , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Humanos , Patentes como Assunto , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor de Insulina/metabolismo
7.
J Diabetes Investig ; 7(6): 833-844, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27177506

RESUMO

AIMS/INTRODUCTION: Our previous study found that dexamethasone-induced insulin resistance (IR) was involved in 5-hydroxytryptamine (5-HT) synthesis and 5-hydroxytryptamine 2 receptor (5-HT2 R) in the periphery. The present study examined the effects of inhibitions of both peripheral 5-HT synthesis and 5-HT2 R on dexamethasone-induced IR. MATERIALS AND METHODS: Male rats were exposed to dexamethasone for 10 days, then treated with or without a 5-HT2 R antagonist, sarpogrelate, a 5-HT synthetic inhibitor, carbidopa, alone or in combination for 20 days. RESULTS: Dexamethasone-induced whole-body IR, with glucose intolerance, decreased insulin sensitivity, hyperglycemia, hyperinsulinemia and dyslipidemia, could be effectively abolished by sarpogrelate or/and carbidopa, whereas IR-related actions of dexamethasone in tissues were accompanied by increased 5-HT synthesis in the liver and visceral adipose, and upregulated 5-HT2 R (5-HT2A R and 5-HT2B R) expression in these two tissues as well as in skeletal muscle. Sarpogrelate or/and carbidopa treatment significantly abolished dexamethasone-caused tissue-specific IR. In the liver, increased gluconeogenesis, triglycerides and very low-density lipoprotein syntheses with steatosis, and downregulated expression of plasmalemmal glucose transporter-2 were markedly reversed. In the visceral adipose and skeletal muscle, downregulated expression of plasmalemmal glucose transporter-4 was significantly reversed, and increased lipolysis was also reversed in the visceral adipose. Dexamethasone-induced activations of hepatic mammalian target of rapamycin serine2448 , and S6K threonine389/412 phosphorylation were also abolished markedly by sarpogrelate or/and carbidopa. Co-treatment with sarpogrelate and carbidopa showed a synergistic effect on suppressing dexamethasone actions. CONCLUSION: Inhibitions of both peripheral 5-HT synthesis and 5-HT2 R are expected to be a dependable target for treatment of steroid-induced diabetes.


Assuntos
Carbidopa/administração & dosagem , Hiperglicemia/tratamento farmacológico , Resistência à Insulina , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Succinatos/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Dexametasona/administração & dosagem , Quimioterapia Combinada , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Fígado/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores 5-HT2 de Serotonina/metabolismo , Serotonina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA