Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Chemother ; 30(10): 983-988, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38522794

RESUMO

BACKGROUND: Time-dependent changes in cell populations during acute bacterial infections remain unclear. We assessed time-dependent changes in fluorescent light intensity of the neutrophil area (NE-SFL) and fluorescent light distribution width index of the neutrophil area (NE-WY) and their association with sepsis and bacteremia. METHODS: Patients with acute bacterial infections were enrolled in this prospective, observational cohort study. Blood samples were collected from all patients at the onset of bacterial infections (day 0) and on days 1 and 3. Microbiological evaluation included the examination of blood bacterial load using PCR. Cell population data were assessed using an automated hematology analyzer (Sysmex series XN-2000). RESULTS: Forty-three participants with acute bacterial infections were enrolled in the study. Twenty-five participants developed definite sepsis. All the participants improved after the onset of infection. NE-WY levels showed significant time-dependent changes in participants with sepsis, peaking on day 0 and significantly decreasing until day 3, whereas these changes were not statistically significant for NE-SFL. A significant correlation with the Sequential Organ Failure Assessment score was observed with NE-WY and NE-SFL in the entire cohort on days 0 and 1. However, only NE-WY showed a significant correlation with blood bacterial load on days 0 and 1. CONCLUSION: This study demonstrated that NE-WY elevation in sepsis peaked earlier than NE-SFL, which may partly reflect the early bacterial invasion into circulation. These findings advocate caution in interpreting cell population data values as sepsis biomarkers and propose the potential of NE-WY as a therapeutic indicator.


Assuntos
Carga Bacteriana , Sepse , Humanos , Masculino , Feminino , Idoso , Estudos Prospectivos , Pessoa de Meia-Idade , Sepse/microbiologia , Sepse/sangue , Sepse/diagnóstico , Carga Bacteriana/métodos , Idoso de 80 Anos ou mais , Fatores de Tempo , Neutrófilos , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Bacteriemia/sangue , Adulto , Infecções Bacterianas/sangue , Infecções Bacterianas/microbiologia , Infecções Bacterianas/diagnóstico , Contagem de Leucócitos
2.
Magn Reson Med ; 89(2): 729-737, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161670

RESUMO

PURPOSE: To calculate temperatures from T2 *-weighted images collected during optogenetic fMRI based on proton resonance frequency (PRF) shift thermometry, to monitor confounding heating effects and determine appropriate light parameters for optogenetic stimulation. METHODS: fMRI is mainly based on long-TE gradient-recalled echo acquisitions that are also suitable for measuring small temperature changes via the PRF shift. A motion- and respiration-robust processing pipeline was developed to calculate temperature changes based on the PRF shift directly from the T2 *-weighted images collected for fMRI with a two-shot 2D gradient-recalled echo-EPI sequence at 9.4T. Optogenetic fMRI protocols which differed in stimulation durations (3, 6 and 9 s) within a total block duration of 30 s were applied in a squirrel monkey to validate the methods with blue and green light (20 Hz, 30 mW) delivery interleaved between periods. General linear modeling was performed on the resulting time series temperature maps to verify if light delivery with each protocol resulted in significant heating in the brain around the optical fiber. RESULTS: The temperature SD was 0.05°C with the proposed imaging protocol and processing. Statistical analysis showed that the optogenetic stimulation protocol with a 3 s stimulation duration did not result in significant temperature rises. Significant temperature rises up to 0.13°C (p < 0. 05) were observed with 6 and 9 s stimulation durations for blue and green light. CONCLUSION: The proposed processing pipeline can be useful for the design of optogenetic stimulation protocols and for monitoring confounding heating effects.


Assuntos
Imageamento por Ressonância Magnética , Optogenética , Imageamento por Ressonância Magnética/métodos , Calefação , Encéfalo/diagnóstico por imagem , Prótons , Lasers , Imagens de Fantasmas
3.
NMR Biomed ; 36(1): e4826, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057925

RESUMO

Proton resonance frequency shift (PRFS) is currently the gold standard method for magnetic resonance thermometry. However, the linearity between the temperature-dependent phase accumulation and the static magnetic field B0 confines its use to rather high-field scanners. Applications such as thermal therapies could naturally benefit from lower field MRI settings through leveraging increased accessibility, a lower physical and economical footprint, and further consideration of the technical challenges associated with the integration of heating systems into conventional clinical scanners. T 1 -based thermometry has been proposed as an alternative to the gold standard; however, because of longer acquisition times, it has found clinical use solely with adipose tissue where PRFS fails. At low field, the enhanced T 1 dispersion, combined with reduced relaxation times, make T 1 mapping an appealing candidate. Here, an interleaved Look-Locker-based T 1 mapping sequence was proposed for temperature quantification at 0.1 T. A variable averaging scheme was introduced, to maximize the signal-to-noise ratio throughout T 1 recovery. In calibrated samples, an average T 1 accuracy of 85% ± 4% was achieved in 10 min, compared with the 77% ± 7% obtained using a standard averaging scheme. Temperature maps between 29.0 and 41.7°C were eventually reconstructed, with a precision of 3.0 ± 1.1°C and an accuracy of 1.5 ± 1.0°C. Accounting for longer thermal treatments and less strict temperature constraints, applications such as MR-guided mild hyperthermia treatments at low field could be envisioned.


Assuntos
Campos Magnéticos
4.
Int J Hyperthermia ; 40(1): 2184399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907223

RESUMO

PURPOSE: MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS: MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS: The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION: For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.


Assuntos
Hipertermia Induzida , Termometria , Humanos , Termometria/métodos , Hipertermia Induzida/métodos , Imagens de Fantasmas , Encéfalo , Imageamento por Ressonância Magnética/métodos
5.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896632

RESUMO

The capabilities of Fiber Bragg Grating (FBG) sensors to measure temperature variations in the bulk of liquid flows were considered. In the first step of our research project, reported in this paper, we investigated to what extent the use of thin glass fibers without encapsulation, which only minimally disturb a flow, can fulfill the requirements for robustness and measurement accuracy. Experimental tests were performed in a benchmark setup containing 24 FBG measuring positions, which were instrumented in parallel with thermocouples for validation. We suggest a special assembly procedure in which the fiber is placed under a defined tension to improve its stiffness and immobility for certain flow conditions. This approach uses a single FBG sensor as a reference that measures the strain effect in real time, allowing accurate relative temperature measurements to be made at the other FBG sensor points, taking into account an appropriate correction term. Absolute temperature readings can be obtained by installing another well-calibrated, strain-independent thermometer on the reference FBG. We demonstrated this method in two test cases: (i) a temperature gradient with stable density stratification in the liquid metal GaInSn and (ii) the heating of a water column using a local heat source. In these measurements, we succeeded in recording both spatial and temporal changes in the linear temperature distribution along the fiber. We present the corresponding results from the tests and, against this background, we discuss the capabilities and limitations of this measurement technique with respect to the detection of temperature fields in liquid flows.

6.
J Therm Biol ; 111: 103424, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585088

RESUMO

Infrared thermography (IRT) is a technology that has been used as an auxiliary tool in the diagnostic process of several diseases and in sports monitoring to prevent injuries. However, the evaluation of a thermogram can be influenced by several factors that need to be understood and controlled to avoid a misinterpretation of the thermogram and, consequently, an inappropriate clinical action. Among the possible factors that can affect IRT are anthropometric factors, especially those related to body composition. Based on these, our objective was to verify the influence of Body Mass Index (BMI) on skin temperature (Tsk) in male adolescents. One hundred male adolescents (age: 16.83 ±â€¯1.08 years; body mass: 66.51 ±â€¯13.35 kg; height: 1.75 ±â€¯7.04 m and BMI: 21.57 ±â€¯4.06 kg/m2) were evaluated and divided into three groups, based on the World Health Organization (WHO) proposed classification ranges: underweight (n = 33), normal weight (n = 34) and overweight/obesity (n = 34). Thermograms were obtained using the FLIR T420 thermal imager after a period of acclimatization of the subjects in a controlled environment (temperature: 21.3 ±â€¯0.7 °C and humidity: 55.3 ±â€¯2.2%); they were evaluated using the ThermoHuman® software, integrating the original regions of interest (ROI) into seven larger ROIs. The results showed that underweight individuals had higher Tsk values than normal weight and overweight/obese individuals for all evaluated ROIs, and overweight/obese individuals had lower Tsk values than normal weight individuals for most evaluated ROIs, except for arms region. BMI showed a correlation of -0.68 and -0.64 for the anterior and posterior regions of the trunk, respectively. Thermal normality tables were proposed for various ROIs according to BMI classification. Our study demonstrated that BMI can affect the Tsk values assessed by IRT and needs to be considered to interpret the thermograms.


Assuntos
Sobrepeso , Temperatura Cutânea , Humanos , Masculino , Adolescente , Índice de Massa Corporal , Termografia , Magreza , Obesidade
7.
AAPS PharmSciTech ; 24(1): 45, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703029

RESUMO

Best practices for performing freeze dryer equipment qualification are recommended, focusing on identifying methods to quantify shelf thermal uniformity (also known as "shelf surface uniformity"), equipment capability, and performance metrics of the freeze dryer essential to the pharmaceutical Quality by Design paradigm. Specific guidelines for performing shelf temperature mapping, freeze dryer equipment limit testing (the capability curve), and condenser performance metrics have been provided. Concerning shelf temperature mapping and equipment capability measurements, the importance of paying attention to the test setup and the use of appropriate testing tools are stressed. In all the guidelines provided, much attention has been paid to identifying the balance between obtaining useful process knowledge, logistical challenges associated with testing in the production environment vs that at laboratory scale, and the frequency of the testing necessary to obtain such useful information. Furthermore, merits and demerits of thermal conditions maintained on the cooled surfaces of the freeze dryer condenser have been discussed identifying the specific influence of the condenser surface temperature on the process conditions using experimental data to support the guidelines. Finally, guidelines for systematic leak rate testing criteria for a freeze dryer are presented. These specific procedural recommendations are based on calculations, measurements, and experience to provide useful process and equipment knowledge.


Assuntos
Liofilização , Tecnologia Farmacêutica , Liofilização/instrumentação , Tecnologia Farmacêutica/métodos , Temperatura , Guias como Assunto
8.
Chemistry ; 28(29): e202200725, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35294078

RESUMO

Two challenges remain for organic thermoresponsive materials; one is to develop high-performance red-emissive thermoresponsive materials, while another is to simultaneously achieve high contrast ratio (CR), fast and reversible thermoresponse in a single element. Herein, we not only develop a new deep-red emissive squaraine-based AIEgen (TPE-SQ12) based on a pyrylium end group, which is suitable for fabricating high-performance thermoresponsive materials, but also show an effective approach to improve both CR (∼ten times increase) and response time (less than 3 seconds), that is, molecularly dispersing AIEgen into an elastomer, attributed to the significantly expanded free volume of elastomer upon increasing the temperature that can activate the AIEgen intramolecular movements more pronouncedly. Double encryption and temperature mapping systems have been separately established by using our designed elastomer/TPE-SQ12 film, showing the great potential for anti-counterfeiting and temperature sensing. Finally, white emission is further achieved by co-doping TPE-SQ12 with cyan dye into elastomer, which enables fluorescent thermochromism for improving the temperature mapping ability.

9.
J Therm Biol ; 110: 103366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462883

RESUMO

BACKGROUND: Pressure Injury (PI) is a severe health problem that affects millions of people. As a preventive strategy for high-risk ICU patients, the appropriate selection of a support surface is essential for preventing PI, along with risk assessment and repositioning. Increasing skin temperature has been associated with a higher susceptibility to PI development. OBJECTIVE: This study aimed to evaluate thermal variations related to skin pressure in the sacral area of healthy individuals lying on three different mattresses models (standard, inflatable air, and egg crate). DESIGN: Experimental study. MAIN OUTCOMES: Initially, a survey was performed to identify the mattresses models most used in four public university hospitals and preventive strategies adopted. And then, an experimental study was conducted with a non-probabilistic sample involving 28 individuals of both sexes, aged 18-35 years old. The volunteers were immobilized for 2 h, and temperature variations in the sacral region were obtained by acquiring thermal images. RESULTS: A significant difference was not found in the temperature recorded on the three mattresses models before the experiment. However, there were significant differences at the 1st and 31st minute (p < 0.001). The lowest temperature values were identified in the air inflatable mattress. Post-hoc comparisons revealed a significant difference between standard or egg crate mattresses and the inflatable air model. CONCLUSION: The inflatable air mattress should be considered for preventing pressure injury in ICU patients since the temperature had returned to the initial value (pre-test) after the 31st min. In addition to the appropriate selection surface, risk assessment and positioning are essential to PI prevention strategies.


Assuntos
Leitos , Região Sacrococcígea , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Temperatura Baixa , Pele , Temperatura , Úlcera por Pressão
10.
Transfusion ; 61 Suppl 1: S206-S213, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269452

RESUMO

BACKGROUND: Pre-hospital blood products, including freeze-dried plasma, are increasingly carried on air ambulance helicopters. The purpose of this study was to map the temperatures within a civilian air ambulance and consider the implications for pre-hospital transfusion. MATERIALS AND METHODS: We conducted a single-site prospective observational study in the United Kingdom. Tinytag temperature data-loggers (Gemini, UK) were secured on to three locations throughout an air ambulance, and one was placed inside an insulated drug-pouch. Temperatures were monitored at 5-min intervals. Data were downloaded monthly and processed using R and MKT software to collate maximum, minimum, and day/night mean kinetic temperatures (MKTs). Blood was transported in Credo ProMed 4 containers (Peli Products, S.L.U) and monitored with QTA data-loggers (Tridentify, Sweden). RESULTS: A total of 344,844 temperature recordings were made on 302 days during a 12-month period from January 2019. The external ambient temperatures varied seasonally from -7.1°C to 31.2°C, whereas internal temperatures ranged from -0.3°C to 60.6°C. The warmest area was alongside the left front-crew position (range 1.9-60.6°C, MKT 24.8°C). The lowest daytime MKT (16.9°C) and range (1.7°C-36.4°C) were recorded next to the patient stretcher. Temperatures ranged from 4.2°C to 40.1°C inside the insulated drugs-pouch, exceeding 25°C on 47 days (15%) and falling below 15°C on 192 days (63%) In contrast, thermally packed blood maintained a range of 2-6°C. CONCLUSION: The temperatures within an air ambulance varied throughout the cabin and often exceeded the external ambient temperature. Appropriately selected thermal protection and monitoring is required for the successful delivery of pre-hospital transfusion, even in a temperate climate.


Assuntos
Resgate Aéreo , Transfusão de Sangue , Serviços Médicos de Emergência , Humanos , Estudos Prospectivos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA