RESUMO
Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.
Assuntos
Anoctaminas , Mutação de Sentido Incorreto , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutação de Sentido Incorreto/genética , Masculino , Feminino , Epilepsia/genética , Criança , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estudos de Associação Genética , Linhagem , Cálcio/metabolismo , Genes Dominantes , Pré-Escolar , Células HEK293 , AdolescenteRESUMO
To test a Chinese character version of the phonemic verbal fluency task in patients with temporal lobe epilepsy (TLE) and assess the verbal fluency deficiency pattern in TLE with and without hippocampal sclerosis, a cross-sectional study was conducted including 30 patients with TLE and hippocampal sclerosis (TLE-HS), 28 patients with TLE and without hippocampal sclerosis (TLE-NHS), and 29 demographically matched healthy controls (HC). Both sexes were enrolled. Participants finished a Chinese character verbal fluency (VFC) task during functional MRI. The activation/deactivation maps, functional connectivity, degree centrality, and community features of the left frontal and temporal regions were compared. A neural network classification model was applied to differentiate TLE-HS and TLE-NHS using functional statistics. The VFC scores were correlated with semantic fluency in HC while correlated with phonemic fluency in TLE-NHS. Activation and deactivation deficiency was observed in TLE-HS and TLE-NHS (p < 0.001, k ≥ 10). Functional connectivity, degree centrality, and community features of anterior inferior temporal gyri were impaired in TLE-HS and retained or even enhanced in TLE-NHS (p < 0.05, FDR-corrected). The functional connectivity was correlated with phonemic fluency (p < 0.05, FDR-corrected). The neural network classification reached an area under the curve of 0.90 in diagnosing hippocampal sclerosis. The VFC task is a Chinese phonemic verbal fluency task suitable for clinical application in TLE. During the VFC task, functional connectivity of phonemic circuits was impaired in TLE-HS and was enhanced in TLE-NHS, representing a compensative phonemic searching strategy applied by patients with TLE-NHS.
Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Imageamento por Ressonância Magnética , Esclerose , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/complicações , Masculino , Feminino , Adulto , Hipocampo/patologia , Hipocampo/fisiopatologia , Hipocampo/diagnóstico por imagem , Estudos Transversais , Adulto Jovem , Pessoa de Meia-Idade , Esclerose HipocampalRESUMO
Considering the growing age of the world population, the incidence of epilepsy in older adults is expected to increase significantly. It has been suggested that late-onset temporal lobe epilepsy (LO-TLE) may be neurodegenerative in origin and overlap with Alzheimer's Disease (AD). Herein, we aimed to characterize the pattern of cortical atrophy and cerebrospinal fluid (CSF) biomarkers of AD (total and phosphorylated tau, and ß-amyloid) in a selected population of LO-TLE of unknown origin. We prospectively enrolled individuals with temporal lobe epilepsy onset after the age of 50 and no cognitive impairment. They underwent a structural MRI scan and CSF biomarkers measurement. Imaging and biomarkers data were compared to three retrospectively collected groups: (i) age-sex-matched healthy controls, (ii) patients with Mild Cognitive Impairment (MCI) and abnormal CSF AD biomarkers (MCI-AD), and (iii) patients with MCI and normal CSF AD biomarkers (MCI-noAD). From a pool of 52 patients, twenty consecutive eligible LO-TLE patients with a mean disease duration of 1.8 years were recruited. As control populations, 25 patients with MCI-AD, 25 patients with MCI-noAD, and 25 healthy controls were enrolled. CSF biomarkers returned normal values in LO-TLE, significantly different from patients with MCI due to AD. There were no differences in cortico-subcortical atrophy between epilepsy patients and healthy controls, while patients with MCI demonstrated widespread injuries of cortico-subcortical structures. Individuals with a late-onset form of temporal lobe epilepsy, characterized by short disease duration and normal CSF ß-amyloid and tau protein levels, showed patterns of cortical thickness and subcortical volumes not significantly different from healthy controls, but highly different from patients with MCI, either due to Alzheimer's Disease or not.
RESUMO
The functional importance of the anterior temporal lobes (ATLs) has come to prominence in two active, albeit unconnected literatures-(i) face recognition and (ii) semantic memory. To generate a unified account of the ATLs, we tested the predictions from each literature and examined the effects of bilateral versus unilateral ATL damage on face recognition, person knowledge, and semantic memory. Sixteen people with bilateral ATL atrophy from semantic dementia (SD), 17 people with unilateral ATL resection for temporal lobe epilepsy (TLE; left = 10, right = 7), and 14 controls completed tasks assessing perceptual face matching, person knowledge and general semantic memory. People with SD were impaired across all semantic tasks, including person knowledge. Despite commensurate total ATL damage, unilateral resection generated mild impairments, with minimal differences between left- and right-ATL resection. Face matching performance was largely preserved but slightly reduced in SD and right TLE. All groups displayed the familiarity effect in face matching; however, it was reduced in SD and right TLE and was aligned with the level of item-specific semantic knowledge in all participants. We propose a neurocognitive framework whereby the ATLs underpin a resilient bilateral representation system that supports semantic memory, person knowledge and face recognition.
Assuntos
Epilepsia do Lobo Temporal , Reconhecimento Facial , Semântica , Lobo Temporal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Lobo Temporal/cirurgia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Adulto , Reconhecimento Facial/fisiologia , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/psicologia , Epilepsia do Lobo Temporal/fisiopatologia , Reconhecimento Psicológico/fisiologia , Lateralidade Funcional/fisiologia , Testes Neuropsicológicos , Memória/fisiologia , Idoso , FaceRESUMO
Temporal lobe epilepsy (TLE) stands as the predominant adult focal epilepsy syndrome, characterized by dysfunctional intrinsic brain dynamics. However, the precise mechanisms underlying seizures in these patients remain elusive. Our study encompassed 116 TLE patients compared with 51 healthy controls. Employing microstate analysis, we assessed brain dynamic disparities between TLE patients and healthy controls, as well as between drug-resistant epilepsy (DRE) and drug-sensitive epilepsy (DSE) patients. We constructed dynamic functional connectivity networks based on microstates and quantified their spatial and temporal variability. Utilizing these brain network features, we developed machine learning models to discriminate between TLE patients and healthy controls, and between DRE and DSE patients. Temporal dynamics in TLE patients exhibited significant acceleration compared to healthy controls, along with heightened synchronization and instability in brain networks. Moreover, DRE patients displayed notably lower spatial variability in certain parts of microstate B, E and F dynamic functional connectivity networks, while temporal variability in certain parts of microstate E and G dynamic functional connectivity networks was markedly higher in DRE patients compared to DSE patients. The machine learning model based on these spatiotemporal metrics effectively differentiated TLE patients from healthy controls and discerned DRE from DSE patients. The accelerated microstate dynamics and disrupted microstate sequences observed in TLE patients mirror highly unstable intrinsic brain dynamics, potentially underlying abnormal discharges. Additionally, the presence of highly synchronized and unstable activities in brain networks of DRE patients signifies the establishment of stable epileptogenic networks, contributing to the poor responsiveness to antiseizure medications. The model based on spatiotemporal metrics demonstrated robust predictive performance, accurately distinguishing both TLE patients from healthy controls and DRE patients from DSE patients.
Assuntos
Epilepsia do Lobo Temporal , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Conectoma/métodosRESUMO
Mesial temporal lobe epilepsy (MTLE) is characterized by recurring focal seizures that arise from limbic areas and are often refractory to pharmacological interventions. We have reported that optogenetic stimulation of PV-positive cells in the medial septum at 0.5 Hz exerts seizure-suppressive effects. Therefore, we compared here these results with those obtained by optogenetic stimulation of medial septum PV-positive neurons at 8 Hz in male PV-ChR2 mice (P60-P100) undergoing an initial, pilocarpine-induced status epilepticus (SE). Optogenetic stimulation (5 min ON, 10 min OFF) was performed from day 8 to day 12 after SE at a frequency of 8 Hz (n = 6 animals) or 0.5 Hz (n = 8 animals). Surprisingly, in both groups, no effects were observed on the occurrence of interictal spikes and interictal high frequency oscillations (HFOs). However, 0.5 Hz stimulation induced a significant decrease of seizure occurrence (p < 0.05). Such anti-ictogenic effect was not observed in the 8 Hz protocol that instead triggered seizures (p < 0.05); these seizures were significantly longer under optogenetic stimulation compared to when optogenetic stimulation was not implemented (p < 0.05). Analysis of ictal HFOs revealed that in the 0.5 Hz group, but not in the 8 Hz group, seizures occurring under optogenetic stimulation were associated with significantly lower rates of fast ripples compared to when optogenetic stimulation was not performed (p < 0.05). Our results indicate that activation of GABAergic PV-positive neurons in the medial septum exerts seizure-suppressing effects that are frequency-dependent and associated with low rates of fast ripples. Optogenetic activation of medial septum PV-positive neurons at 0.5 Hz is efficient in blocking seizures in the pilocarpine model of MTLE, an effect that did not occur with 8 Hz stimulation.
Assuntos
Epilepsia do Lobo Temporal , Optogenética , Convulsões , Animais , Optogenética/métodos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/terapia , Masculino , Convulsões/fisiopatologia , Camundongos , Pilocarpina/toxicidade , Camundongos Transgênicos , Modelos Animais de Doenças , Septo do Cérebro , Núcleos Septais/fisiopatologia , Camundongos Endogâmicos C57BLRESUMO
Studying the development of brain network disruptions in epilepsy is challenged by the paucity of data before epilepsy onset. Here, we used the unilateral, kainate mouse model of hippocampal epilepsy to investigate brain network changes before and after epilepsy onset and their stability across time. Using 32 epicranial electrodes distributed over the mouse hemispheres, we analyzed EEG epochs free from epileptic activity in 15 animals before and 28 days after hippocampal injection (group 1) and in 20 animals on two consecutive days (d28 and d29, group 2). Statistical dependencies between electrodes were characterized with the debiased-weighted phase lag index. We analyzed: a) graph metric changes from baseline to chronic stage (d28) in group 1; b) their reliability across d28 and d29, in group 2; c) their correlation with epileptic activity (EA: seizure, spike and fast-ripple rates), averaged over d28 and d29, in group 2. During the chronic stage, intra-hemispheric connections of the non-injected hemisphere strengthened, yielding an asymmetrical network in low (4-8 Hz) and high theta (8-12 Hz) bands. The contralateral hemisphere also became more integrated and segregated within the high theta band. Both network topology and EEG markers of EA were stable over consecutive days but not correlated with each other. Altogether, we show reproducible large-scale network modifications after the development of focal epilepsy. These modifications are mostly specific to the non-injected hemisphere. The absence of correlation with epileptic activity does not allow to specifically ascribe these network changes to mechanisms supporting EA or rather compensatory inhibition but supports the notion that epilepsy extends beyond the sole repetition of EA and impacts network that might not be involved in EA generation.
Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Camundongos , Animais , Reprodutibilidade dos Testes , Encéfalo , Gravidade do Paciente , EletroencefalografiaRESUMO
A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.
Assuntos
Epilepsia do Lobo Temporal , Animais , Epilepsia do Lobo Temporal/patologia , Núcleo Accumbens/metabolismo , Parvalbuminas/metabolismo , Convulsões/patologia , Hipocampo/patologia , Neurônios GABAérgicos/metabolismo , Ácido Caínico/toxicidade , Modelos Animais de DoençasRESUMO
In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.
Assuntos
Regulação para Baixo , Hipocampo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Animais , Hipocampo/metabolismo , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.1/genética , Proteínas/metabolismo , Proteínas/genética , Camundongos Endogâmicos C57BL , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.2/genética , Neurônios/metabolismoRESUMO
Numerous epilepsy-related genes have been identified in recent decades by unbiased genome-wide screens. However, the available druggable targets for temporal lobe epilepsy (TLE) remain limited. Furthermore, a substantial pool of candidate genes potentially applicable to TLE therapy awaits further validation. In this study, we reveal the significant role of KCNQ2 and KCNQ3, two M-type potassium channel genes, in the onset of seizures in TLE. Our investigation began with a quantitative analysis of two publicly available TLE patient databases to establish a correlation between seizure onset and the downregulated expression of KCNQ2/3. We then replicated these pathological changes in a pilocarpine seizure mouse model and observed a decrease in spike frequency adaptation due to the affected M-currents in dentate gyrus granule neurons. In addition, we performed a small-scale simulation of the dentate gyrus network and confirmed that the impaired spike frequency adaptation of granule cells facilitated epileptiform activity throughout the network. This, in turn, resulted in prolonged seizure duration and reduced interictal intervals. Our findings shed light on an underlying mechanism contributing to ictogenesis in the TLE hippocampus and suggest a promising target for the development of antiepileptic drugs.
Assuntos
Epilepsia do Lobo Temporal , Camundongos , Animais , Humanos , Epilepsia do Lobo Temporal/patologia , Giro Denteado/metabolismo , Convulsões/induzido quimicamente , Convulsões/patologia , Hipocampo/metabolismo , Neurônios/fisiologia , Canal de Potássio KCNQ2/genéticaRESUMO
Epilepsy is a neurological disease characterised by recurrent seizures with complex aetiology. Temporal lobe epilepsy, the most common form in adults, can be acquired following brain insults including trauma, stroke, infection or sustained status epilepticus. The mechanisms that give rise to the formation and maintenance of hyperexcitable networks following acquired insults remain unknown, yet an extensive body of literature points towards persistent gene and epigenomic dysregulation as a potential mediator of this dysfunction. While much is known about the function of specific classes of epigenetic regulators (writers and erasers) in epilepsy, much less is known about the enzymes, which read the epigenome and modulate gene expression accordingly. Here, we explore the potential role for the epigenetic reader bromodomain and extra-terminal domain (BET) proteins in epilepsy. Using the intra-amygdala kainic acid model of temporal lobe epilepsy, we initially identified widespread dysregulation of important epigenetic regulators including EZH2 and REST as well as altered BRD4 expression in chronically epileptic mice. BRD4 activity was also notably affected by epilepsy-provoking insults as seen by elevated binding to and transcriptional regulation of the immediate early gene Fos. Despite influencing early aspects of epileptogenesis, blocking BET protein activity with JQ1 had no overt effects on epilepsy development in mice but did alter glial reactivity and influence gene expression patterns, promoting various neurotransmitter signalling mechanisms and inflammatory pathways in the hippocampus. Together, these results confirm that epigenetic reader activity is affected by epilepsy-provoking brain insults and that BET activity may exert cell-specific actions on inflammation in epilepsy.
Assuntos
Azepinas , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Gliose , Hipocampo , Ácido Caínico , Convulsões , Triazóis , Animais , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Triazóis/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Azepinas/farmacologia , Camundongos , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Convulsões/genética , Ácido Caínico/farmacologia , Gliose/metabolismo , Gliose/tratamento farmacológico , Masculino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Epigênese Genética/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas que Contêm BromodomínioRESUMO
BACKGROUD: Temporal lobe epilepsy (TLE) is associated with abnormal dynamic functional connectivity patterns, but the dynamic changes in brain activity at each time point remain unclear, as does the potential molecular mechanisms associated with the dynamic temporal characteristics of TLE. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) was acquired for 84 TLE patients and 35 healthy controls (HCs). The data was then used to conduct HMM analysis on rs-fMRI data from TLE patients and an HC group in order to explore the intricate temporal dynamics of brain activity in TLE patients with cognitive impairment (TLE-CI). Additionally, we aim to examine the gene expression profiles associated with the dynamic modular characteristics in TLE patients using the Allen Human Brain Atlas (AHBA) database. RESULTS: Five HMM states were identified in this study. Compared with HCs, TLE and TLE-CI patients exhibited distinct changes in dynamics, including fractional occupancy, lifetimes, mean dwell time and switch rate. Furthermore, transition probability across HMM states were significantly different between TLE and TLE-CI patients (p < 0.05). The temporal reconfiguration of states in TLE and TLE-CI patients was associated with several brain networks (including the high-order default mode network (DMN), subcortical network (SCN), and cerebellum network (CN). Furthermore, a total of 1580 genes were revealed to be significantly associated with dynamic brain states of TLE, mainly enriched in neuronal signaling and synaptic function. CONCLUSIONS: This study provides new insights into characterizing dynamic neural activity in TLE. The brain network dynamics defined by HMM analysis may deepen our understanding of the neurobiological underpinnings of TLE and TLE-CI, indicating a linkage between neural configuration and gene expression in TLE.
Assuntos
Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Cadeias de Markov , Humanos , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Regulação da Expressão Gênica , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Descanso/fisiologia , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagemRESUMO
White matter microvascular alterations in temporal lobe epilepsy (TLE) may be relevant to acquired neurodegenerative processes and cognitive impairments associated with this condition. We quantified microvascular changes, myelin, axonal, glial and extracellular-matrix labelling in the gyral core and deep temporal lobe white matter regions in surgical resections from 44 TLE patients with or without hippocampal sclerosis. We compared this pathology data with in vivo pre-operative MRI diffusion measurements in co-registered regions and neuropsychological measures of cognitive impairment and decline. In resections, increased arteriolosclerosis was observed in TLE compared to non-epilepsy controls (greater sclerotic index, p < 0.001), independent of age. Microvascular changes included increased vascular densities in some regions but uniformly reduced mean vascular size (quantified with collagen-4, p < 0.05-0.0001), and increased pericyte coverage of small vessels and capillaries particularly in deep white matter (quantified with platelet-derived growth factor receptorß and smooth muscle actin, p < 0.01) which was more marked the longer the duration of epilepsy (p < 0.05). We noted increased glial numbers (Olig2, Iba1) but reduced myelin (MAG, PLP) in TLE compared to controls, particularly prominent in deep white matter. Gene expression analysis showed a greater reduction of myelination genes in HS than non-HS cases and with age and correlation with diffusion MRI alterations. Glial densities and vascular size were increased with increased MRI diffusivity and vascular density with white matter abnormality quantified using fixel-based analysis. Increased perivascular space was associated with reduced fractional anisotropy as well as age-accelerated cognitive decline prior to surgery (p < 0.05). In summary, likely acquired microangiopathic changes in TLE, including vascular sclerosis, increased pericyte coverage and reduced small vessel size, may indicate a functional alteration in contractility of small vessels and haemodynamics that could impact on tissue perfusion. These morphological features correlate with white matter diffusion MRI alterations and might explain cognitive decline in TLE.
Assuntos
Imagem de Difusão por Ressonância Magnética , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Adulto Jovem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/patologia , Hipocampo/patologia , Hipocampo/diagnóstico por imagemRESUMO
PURPOSE: Precise lateralizing the epileptogenic zone in patients with drug-resistant mesial temporal lobe epilepsy (mTLE) remains challenging, particularly when routine MRI scans are inconclusive (MRI-negative). This study aimed to investigate the synergy of fast, high-resolution, whole-brain MRSI in conjunction with simultaneous [18F]FDG PET for the lateralization of mTLE. METHODS: Forty-eight drug-resistant mTLE patients (M/F 31/17, age 12-58) underwent MRSI and [18F]FDG PET on a hybrid PET/MR scanner. Lateralization of mTLE was evaluated by visual inspection and statistical classifiers of metabolic mappings against routine MRI. Additionally, this study explored how disease status influences the associations between altered N-acetyl aspartate (NAA) and FDG uptake using hierarchical moderated multiple regression. RESULTS: The high-resolution whole-brain MRSI data offers metabolite maps at comparable resolution to [18F]FDG PET. Visual examinations of combined MRSI and [18F]FDG PET showed an mTLE lateralization accuracy rate of 91.7% in a 48-patient cohort, surpassing routine MRI (52.1%). Notably, out of 23 MRI-negative mTLE, combined MRSI and [18F]FDG PET helped detect 19 cases. Logistical regression models combining hippocampal NAA level and FDG uptake improved lateralization performance (AUC=0.856), while further incorporating extrahippocampal regions such as amygdala, thalamus, and superior temporal gyrus increased the AUC to 0.939. Concurrent MRSI/PET revealed a moderating influence of disease duration and hippocampal atrophy on the association between hippocampal NAA and glucose uptake, providing significant new insights into the disease's trajectory. CONCLUSION: This paper reports the first metabolic imaging study using simultaneous high-resolution MRSI and [18F]FDG PET, which help visualize MRI-unidentifiable lesions and may thus advance diagnostic tools and management strategies for drug-resistant mTLE.
Assuntos
Epilepsia do Lobo Temporal , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Epilepsia do Lobo Temporal/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia Computadorizada por Raios X , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Hipocampo/patologia , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodosRESUMO
Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.
Assuntos
Epilepsia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Epilepsia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons/normas , Medicina Nuclear , Europa (Continente)RESUMO
BACKGROUND: Abnormalities in resting-state functional brain activity have been detected in patients with temporal lobe epilepsy (TLE). The results of individual neuroimaging studies of TLE, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. PURPOSE: To investigate the most consistent regions of resting-state functional brain activity abnormality in patients with TLE through a quantitative meta-analysis of published neuroimaging data. STUDY TYPE: Meta-analysis. SUBJECTS: Exactly 1474 TLE patients (716 males and 758 females) from 31 studies on resting-state functional brain activity were included in this study. FIELD STRENGTH/SEQUENCE: Studies utilizing 1.5 T or 3 T MR scanners were included for meta-analysis. Resting-state functional MRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT: PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases were searched to identify studies investigating amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) at the whole-brain level between patients with TLE and healthy controls (HCs). STATISTICAL TESTS: Seed-based d Mapping with Permutation of Subject Images, standard randomization tests and meta-regression analysis were used. Results were significant if P < 0.05 with family-wise error corrected. RESULTS: Patients with TLE displayed resting-state functional brain activity which was a significant increase in the right hippocampus, and significant decrease in the right angular gurus and right precuneus. Additionally, the meta-regression analysis demonstrated that age (P = 0.231), sex distribution (P = 0.376), and illness duration (P = 0.184), did not show significant associations with resting state functional brain activity in patients with TLE. DATA CONCLUSION: Common alteration patterns of spontaneous brain activity were identified in the right hippocampus and default-model network regions in patients with TLE. These findings may contribute to understanding of the underlying mechanism for potentially effective intervention of TLE. TECHNICAL EFFICACY STAGE: Stage 2.
RESUMO
To present the expression of calsyntenin-1 (Clstn1) in the brain and investigate the potential mechanism of Clstn1 in lithium-pilocarpine rat seizure models. Thirty-five male SD adult rats were induced to have seizures by intraperitoneal injection of lithium chloride pilocarpine. Rats exhibiting spontaneous seizures were divided into the epilepsy (EP) group (n = 15), whereas those without seizures were divided into the control group (n = 14). Evaluate the expression of Clstn1 in the temporal lobe of two groups using Western blotting, immunohistochemistry, and immunofluorescence. Additionally, 55 male SD rats were subjected to status epilepticus (SE) using the same induction method. Rats experiencing seizures exceeding Racine's level 4 (n = 48) were randomly divided into three groups: SE, SE + control lentivirus (lentiviral vector expressing green fluorescent protein [LV-GFP]), and SE + Clstn1-targeted RNA interference lentivirus (LV-Clstn1-RNAi). The LV-GFP group served as a control for the lentiviral vector, whereas the LV-Clstn1-RNAi group received a lentivirus designed to silence Clstn1 expression. These lentiviral treatments were administered via hippocampal stereotactic injection 2 days after SE induction. Seven days after SE, Western blot analysis was performed to evaluate the expression of Clstn1 in the hippocampus and temporal lobe. Meanwhile, we observed the latency of spontaneous seizures and the frequency of spontaneous seizures within 8 weeks among the three groups. The expression of Clstn1 in the cortex and hippocampus of the EP group was significantly increased compared to the control group (p < .05). Immunohistochemistry and immunofluorescence showed that Clstn1 was widely distributed in the cerebral cortex and hippocampus of rats, and colocalization analysis revealed that it was mainly co expressed with neurons in the cytoplasm. Compared with the SE group (11.80 ± 2.17 days) and the SE + GFP group (12.40 ± 1.67 days), there was a statistically significant difference (p < .05) in the latency period of spontaneous seizures (15.14 ± 2.41 days) in the SE + Clstn1 + RNAi group rats. Compared with the SE group (4.60 ± 1.67 times) and the SE + GFP group (4.80 ± 2.05 times), the SE + Clstn1 + RNAi group (2.0 ± .89 times) showed a significant reduction in the frequency of spontaneous seizures within 2 weeks of chronic phase in rats (p < .05). Elevated Clstn1 expression in EP group suggests its role in EP onset. Targeting Clstn1 may be a potential therapeutic approach for EP management.
Assuntos
Modelos Animais de Doenças , Pilocarpina , Ratos Sprague-Dawley , Convulsões , Animais , Masculino , Ratos , Encéfalo/metabolismo , Hipocampo/metabolismo , Cloreto de Lítio , Neurocalcina/metabolismo , Neurocalcina/genética , Pilocarpina/toxicidade , Convulsões/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Lobo Temporal/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismoRESUMO
OBJECTIVE: E2730, an uncompetitive γ-aminobutyric acid (GABA) transporter-1 (GAT-1) inhibitor, has potent anti-seizure effects in a rodent model of chronic temporal lobe epilepsy, the kainic acid status epilepticus (KASE) rat model. In this study, we examined purported neuroimaging and physiological surrogate biomarkers of the effect of E2730 on brain GABAergic function. METHODS: We conducted a randomized cross-over study, incorporating 1-week treatments with E2730 (100 mg/kg/day subcutaneous infusion) or vehicle in epileptic post-KASE rats. KASE rats underwent serial 9.4 T magnetic resonance spectroscopy (MRS) measuring GABA and other brain metabolites, [18F]Flumazenil positron emission tomography (PET) quantifying GABAA receptor availability, quantitative electroencephalography (qEEG) and transcranial magnetic stimulation (TMS)-mediated motor activity, as well as continuous video-EEG recording to measure spontaneous seizures during each treatment. Age-matched, healthy control animals treated with E2730 or vehicle were also studied. RESULTS: E2730 treatment significantly reduced spontaneous seizures, with 8 of 11 animals becoming seizure-free. MRS revealed that E2730-treated animals had significantly reduced taurine levels. [18F]Flumazenil PET imaging revealed no changes in GABA receptor affinity or density during E2730 treatment. The power of gamma frequency oscillations in the EEG was decreased significantly in the auditory cortex and hippocampus of KASE and control rats during E2730 treatment. Auditory evoked gamma frequency power was enhanced by E2730 treatment in the auditory cortex of KASE and healthy controls, but only in the hippocampus of KASE rats. E2730 did not influence motor evoked potentials triggered by TMS. SIGNIFICANCE: This study identified clinically relevant changes in multimodality imaging and functional purported biomarkers of GABAergic activity during E2730 treatment in epileptic and healthy control animals. These biomarkers could be utilized in clinical trials of E2730 and potentially other GABAergic drugs to provide surrogate endpoints, thereby reducing the cost of such trials.
RESUMO
OBJECTIVES: Amygdala enlargement is detected on magnetic resonance imaging (MRI) in some patients with drug-resistant temporal lobe epilepsy (TLE), but its clinical significance remains uncertain We aimed to assess if the presence of amygdala enlargement (1) predicted seizure outcome following anterior temporal lobectomy with amygdalohippocampectomy (ATL-AH) and (2) was associated with specific histopathological changes. METHODS: This was a case-control study. We included patients with drug-resistant TLE who underwent ATL-AH with and without amygdala enlargement detected on pre-operative MRI. Amygdala volumetry was done using FreeSurfer for patients who had high-resolution T1-weighted images. Mann-Whitney U test was used to compare pre-operative clinical characteristics between the two groups. The amygdala volume on the epileptogenic side was compared to the amygdala volume on the contralateral side among cases and controls. Then, we used a two-sample, independent t test to compare the means of amygdala volume differences between cases and controls. The chi-square test was used to assess the correlation of amygdala enlargement with (1) post-surgical seizure outcomes and (2) histopathological changes. RESULTS: Nineteen patients with and 19 patients without amygdala enlargement were studied. Their median age at surgery was 38 years for cases and 39 years for controls, and 52.6% were male. There were no statistically significant differences between the two groups in their pre-operative clinical characteristics. There were significant differences in the means of volume difference between cases and controls (Diff = 457.2 mm3, 95% confidence interval [CI] 289.6-624.8; p < .001) and in the means of percentage difference (p < .001). However, there was no significant association between amygdala enlargement and surgical outcome (p = .72) or histopathological changes (p = .63). SIGNIFICANCE: The presence of amygdala enlargement on the pre-operative brain MRI in patients with TLE does not affect the surgical outcome following ATL-AH, and it does not necessarily suggest abnormal histopathology. These findings suggest that amygdala enlargement might reflect a secondary reactive process to seizures in the epileptogenic temporal lobe.
Assuntos
Tonsila do Cerebelo , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Humanos , Tonsila do Cerebelo/cirurgia , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Masculino , Feminino , Adulto , Estudos de Casos e Controles , Resultado do Tratamento , Adulto Jovem , Pessoa de Meia-Idade , Lobectomia Temporal Anterior/métodos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/patologia , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , AdolescenteRESUMO
OBJECTIVE: Pathological amyloid-ß (Aß) accumulation and hyperphosphorylated tau proteins have been described in resected temporal lobe specimens of epilepsy patients. We aimed to determine cerebrospinal fluid (CSF) Aß1-42 and p181-tau levels and cerebral Aß deposits on positron emission tomography (Aß PET) and correlate these findings with cognitive performance in adults with drug-resistant temporal lobe epilepsy (TLE). METHODS: In this cross-sectional study, we enrolled individuals with drug-resistant TLE who were 25-55 years old. Each participant underwent 18F-flutemetamol PET, determination of CSF Aß1-42, p181-tau, and total tau, and a comprehensive neuropsychological assessment. We evaluated normalized standard uptake value ratios (SUVRs) for different brain regions on Aß PET. RESULTS: Thirty patients (mean age = 41.9 ± SD 8.1 years, 57% men) were included. The median disease duration was 9.5 (interquartile range = 4-24) years. Twenty-six patients (87%) had a clinically significant cognitive impairment on neuropsychological evaluation, 18 (69%) of the amnesic type. On Aß PET, high uptake was observed in both mesial temporal regions (ipsilateral: SUVR z-score = .90, 95% confidence interval [CI] = .60-1.20; contralateral: SUVR z-score = .92, 95% CI = .57-1.27; p < .001), which was higher when compared to SUVR z-scores in all the remaining regions (p < .001) and in the ipsilateral anterior cingulate (SUVR z-score = .27, 95% CI = .04-.49, p = .020). No significant deposition was observed in other regions. Seven patients (23%) had low Aß1-42 levels, and two (7%) had elevated p181-tau levels in CSF. Higher p181-tau levels correlated with poorer verbal fluency (R = -.427, p = .044). SIGNIFICANCE: Our findings reveal a considerable Aß deposition in mesial temporal regions and ipsilateral anterior cingulate among adults with drug-resistant TLE. Additionally, abnormal CSF Aß1-42 levels were observed in a significant proportion of patients, and p181-tau levels were associated with verbal fluency. These results suggest that markers of neuronal damage can be observed in adults with TLE, warranting further investigation.