Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.860
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 73(3): 255-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36622841

RESUMO

A quintessential setting for precision medicine, theranostics refers to a rapidly evolving field of medicine in which disease is diagnosed followed by treatment of disease-positive patients using tools for the therapy identical or similar to those used for the diagnosis. Against the backdrop of only-treat-when-visualized, the goal is a high therapeutic index with efficacy markedly surpassing toxicity. Oncology leads the way in theranostics innovation, where the approach has become possible with the identification of unique proteins and other factors selectively expressed in cancer versus healthy tissue, advances in imaging technology able to report these tissue factors, and major understanding of targeting chemicals and nanodevices together with methods to attach labels or warheads for imaging and therapy. Radiotheranostics-using radiopharmaceuticals-is becoming routine in patients with prostate cancer and neuroendocrine tumors who express the proteins PSMA (prostate-specific membrane antigen) and SSTR2 (somatostatin receptor 2), respectively, on their cancer. The palpable excitement in the field stems from the finding that a proportion of patients with large metastatic burden show complete and partial responses, and this outcome is catalyzing the search for more radiotheranostics approaches. Not every patient will benefit from radiotheranostics; but, for those who cross the target-detected line, the likelihood of response is very high.


Assuntos
Tumores Neuroendócrinos , Neoplasias da Próstata , Masculino , Humanos , Medicina de Precisão , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Oncologia
2.
CA Cancer J Clin ; 72(4): 333-352, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34902160

RESUMO

The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.


Assuntos
Oncologia , Imagem Molecular , Animais , Humanos , Imageamento por Ressonância Magnética , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons
3.
Mol Cell ; 81(6): 1170-1186.e10, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571422

RESUMO

The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores Imunológicos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Chaperonas Moleculares/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
4.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865273

RESUMO

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/química
5.
Proc Natl Acad Sci U S A ; 121(11): e2307802121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437557

RESUMO

RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.


Assuntos
Neoplasias Ovarianas , Peptídeos , Humanos , Feminino , Interferência de RNA , Peptídeos/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Peptídeo Hidrolases , RNA Interferente Pequeno/genética , Endopeptidases , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA
6.
Semin Immunol ; 56: 101536, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34862118

RESUMO

Theranostics, literally derived from the combination of the words diagnostics and therapy, is an emerging field of clinical and preclinical research, where contrast agents, drugs and diagnostic techniques are combined to simultaneously diagnose and treat pathologies. Nanoparticles are extensively employed in theranostics due to their potential to target specific organs and their multifunctional capacity. In this review, we will discuss the current state of theranostic nanomedicine, providing key examples of its application in the imaging and treatment of cardiovascular inflammation.


Assuntos
Nanomedicina , Nanopartículas , Humanos , Inflamação , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Medicina de Precisão , Nanomedicina Teranóstica/métodos
7.
Semin Cancer Biol ; 94: 62-80, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37302519

RESUMO

The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Medicina de Precisão , Tomografia de Coerência Óptica/métodos , Oncologia
8.
J Cell Physiol ; 239(4): e31200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291732

RESUMO

Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.


Assuntos
Dissecção Aórtica , Aterosclerose , Hipertensão , Músculo Liso Vascular , Humanos , Dissecção Aórtica/patologia , Aterosclerose/patologia , Proliferação de Células , Células Cultivadas , Hipertensão/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo
9.
Prostate ; 84(11): 993-1015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38682886

RESUMO

INTRODUCTION: The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS: The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS: The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION: This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.


Assuntos
Pesquisa Biomédica , Neoplasias da Próstata , Humanos , Masculino , Pesquisa Biomédica/tendências , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia
10.
Small ; 20(11): e2306960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884473

RESUMO

Hydrogels are known to have the advantages such as good biodegradability, biocompatibility, and easy functionalization, making them ideal candidates for biosensors. Hydrogel-based biosensors that respond to bacteria-induced microenvironmental changes such as pH, enzymes, antigens, etc., or directly interact with bacterial surface receptors, can be applied for early diagnosis of bacterial infections, providing information for timely treatment while avoiding antibiotic abuse. Furthermore, hydrogel biosensors capable of both bacteria diagnosis and treatment will greatly facilitate the development of point-of-care monitoring of bacterial infections. In this review, the recent advancement of hydrogel-based biosensors for bacterial infection is summarized and discussed. First, the biosensors based on pH-sensitive hydrogels, bacterial-specific secretions-sensitive hydrogels, and hydrogels directly in contact with bacterial surfaces are presented. Next, hydrogel biosensors capable of detecting bacterial infection in the early stage followed by immediate on-demand treatment are discussed. Finally, the challenges and future development of hydrogel biosensors for bacterial infections are proposed.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Humanos , Hidrogéis , Infecções Bacterianas/diagnóstico , Antibacterianos , Bactérias
11.
Small ; 20(6): e2307078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775950

RESUMO

Gene therapy (GT) and photothermal therapy (PTT) have emerged as promising alternatives to chemotherapy and radiotherapy for cancer treatment, offering noninvasiveness and reduced side effects. However, their efficacy as standalone treatments is limited. GT exhibits slow response rates, while PTT is confined to local tumor ablation. The convergence of GT and PTT, known as GT-PTT, facilitated by photothermal gene nanocarriers, has attracted considerable attention across various disciplines. In this integrated approach, GT reciprocates PTT by sensitizing cellular response to heat, while PTT benefits GT by improving gene translocation, unpacking, and expression. Consequently, this integration presents a unique opportunity for cancer therapy with rapid response and improved effectiveness. Extensive efforts over the past few years have been dedicated to the development of GT-PTT, resulting in notable achievements and rapid progress from the laboratory to potential clinical applications. This comprehensive review outlines recent advances in GT-PTT, including synergistic mechanisms, material systems, imaging-guided therapy, and anticancer applications. It also explores the challenges and future prospects in this nascent field. By presenting innovative ideas and insights into the implementation of GT-PTT for enhanced cancer therapy, this review aims to inspire further progress in this promising area of research.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Fototerapia/métodos , Terapia Combinada , Temperatura Alta , Hipertermia Induzida/métodos , Neoplasias/tratamento farmacológico
12.
Small ; 20(14): e2306446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105592

RESUMO

Copper-based nanozymes exhibit excellent antitumor activity but are easily inactivated due to the disturbance of proteins or other macromolecules with sulfhydryl. A tumor microenvironment-responsive CuMnO@Fe3O4 (CMF) core-shell nanozyme for highly efficient tumor theranostics is developed. A platelet-derived growth factor receptor-ß-recognizing cyclic peptide (PDGFB) target is conjugated to the surface of CMF to fabricate a tumor-specific nanozyme (PCMF). The core-shell nanostructure significantly avoids the oxidation and inactivation of copper-based nanozyme, promoting the antitumor activity of PCMF. The weak acid- and GSH-activated T1 and T2 relaxation rate of PCMF contributes to T1 and T2 dual contrast imaging at the tumor site. In addition, the PCMF disintegrates and produces some metal ions that possess Fenton catalytic activity (i.e., Cu+, Mn2+, and Fe2+) under TME. This process significantly depletes GSH, accelerates Fenton and Fenton-like reactions, enhances cellular reactive oxygen species (ROS) levels, and induces cancer cell apoptosis and ferroptosis. PCMF also exhibits photothermal functions, so it can be used in combined photothermal therapy, ferroptosis therapy, and chemodynamic therapy, improving anticancer activity. This work provides insights into the design of an exquisite nanostructure for high-sensitive and tumor-specific theranostics.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Medicina de Precisão , Cobre , Microambiente Tumoral , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Peróxido de Hidrogênio , Linhagem Celular Tumoral
13.
Small ; : e2309891, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721972

RESUMO

Although the current cancer photothermal therapy (PTT) can produce a powerful therapeutic effect, tumor cells have been proved a protective mechanism through autophagy. In this study, a novel hybrid theranostic nanoparticle (CaCO3@CQ@pDB NPs, CCD NPs) is designed and prepared by integrating a second near-infrared (NIR-II) absorbed conjugated polymer DTP-BBT (pDB), CaCO3, and autophagy inhibitor (chloroquine, CQ) into one nanosystem. The conjugated polymer pDB with asymmetric donor-acceptor structure shows strong NIR-II absorbing capacity, of which the optical properties and photothermal generation mechanism of pDB are systematically analyzed via molecular theoretical calculation. Under NIR-II laser irradiation, pDB-mediated PTT can produce powerful killing ability to tumor cells. At the same time, heat stimulates a large amount of Ca2+ inflow, causing calcium overload induced mitochondrial damage and enhancing the apoptosis of tumor cells. Besides, the released CQ blocks the self-protection mechanism of tumor cells and greatly enhances the attack of PTT and calcium overload therapy. Both in vitro and in vivo experiments confirm that CCD NPs possess excellent NIR-II theranostic capacity, which provides a new nanoplatform for anti-tumor therapy and builds great potential for future clinical research.

14.
Small ; : e2400963, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686696

RESUMO

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.

15.
J Transl Med ; 22(1): 594, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926762

RESUMO

The transforming growth factor-beta (TGF-ß) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-ß signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-ß signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-ß plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.


Assuntos
Fibrose , Neoplasias , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais
16.
Ophthalmology ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908553

RESUMO

PURPOSE: To validate the ability of theranostic imaging biomarkers in assessing corneal cross-linking (CXL) efficacy in flattening the maximum keratometry (Kmax) index. DESIGN: Prospective, randomized, multicenter, masked clinical trial (ClinicalTrails.gov identifier, NCT05457647). PARTICIPANTS: Fifty patients with progressive keratoconus. INTERVENTION: Participants were stratified to undergo epithelium-off (25 eyes) and epithelium-on (25 eyes) CXL protocols using an ultraviolet A (UV-A) medical device with theranostic software. The device controlled UV-A light both for performing CXL and assessing the corneal riboflavin concentration (riboflavin score) and treatment effect (theranostic score). A 0.22% riboflavin formulation was applied onto the cornea for 15 minutes and 20 minutes in epithelium-off and epithelium-on protocols, respectively. All eyes underwent 9 minutes of UV-A irradiance at 10 mW/cm2. MAIN OUTCOME MEASURES: The primary outcome measure was validation of the combined use of theranostic imaging biomarkers through measurement of their accuracy (proportion of correctly classified eyes) and precision (positive predictive value) to classify eyes correctly and predict a Kmax flattening at 1 year after CXL. Other outcome measures included change in Kmax, endothelial cell density, uncorrected and corrected distance visual acuity, manifest spherical equivalent refraction and central corneal thickness 1 year after CXL. RESULTS: Accuracy and precision of the theranostic imaging biomarkers in predicting eyes that had >0.1 diopter (D) of Kmax flattening at 1 year were 91% and 95%, respectively. The Kmax value significantly flattened by a median of -1.3 D (IQR, -2.11 to -0.49 D; P < 0.001); both the uncorrected and corrected distance visual acuity improved by a median of -0.1 logarithm of the minimum angle of resolution (logMAR; IQR, -0.3 to 0.0 logMAR [P < 0.001] and -0.2 to 0.0 logMAR [P < 0.001], respectively). No significant changes in endothelial cell density (P = 0.33) or central corneal thickness (P = 0.07) were noted 1 year after surgery. CONCLUSIONS: The study demonstrated the efficacy of integrating theranostics in a UV-A medical device for the precise and predictive treatment of keratoconus with epithelium-off and epithelium-on CXL protocols. Concentration of riboflavin and its UV-A light mediated photoactivation in the cornea are the primary factors determining CXL efficacy. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

17.
Eur J Clin Invest ; 54(7): e14208, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38622800

RESUMO

BACKGROUND: Cardiovascular diseases (CVD) impact a substantial portion of the global population and represent a significant threat to experiencing life-threatening outcomes, such as atherosclerosis, myocardial infarction, stroke and heart failure. Despite remarkable progress in pharmacology and medical interventions, CVD persists as a major public health concern, and now ranks as the primary global cause of death and the highest consumer of global budgets. Ongoing research endeavours persist in seeking novel therapeutic avenues and interventions to deepen our understanding of CVD, enhance prevention measures, and refine treatment strategies. METHODS: Nanotechnology applied to the development of new molecular probes with diagnostic and theranostic properties represents one of the greatest technological challenges in preclinical and clinical research. RESULTS: The application of nanotechnology in cardiovascular medicine holds great promise for advancing our understanding of CVDs and revolutionizing their diagnosis and treatment strategies, ultimately improving patient care and outcomes. In addition, the capacity of drug encapsulation in nanoparticles has significantly bolstered their biological safety, bioavailability and solubility. In combination with imaging technologies, molecular imaging has emerged as a pivotal therapeutic tool, offering insight into the molecular events underlying disease and facilitating targeted treatment approaches. CONCLUSION: Here, we present a comprehensive overview of the recent advancements in targeted nanoparticle approaches for diagnosing CVDs, encompassing molecular imaging techniques, underscoring the significant progress in theranostic, as a novel and promising therapeutic strategy.


Assuntos
Doenças Cardiovasculares , Humanos , Nanopartículas/uso terapêutico , Nanomedicina Teranóstica/métodos , Imagem Molecular , Nanotecnologia , Insuficiência Cardíaca/terapia , Infarto do Miocárdio , Acidente Vascular Cerebral , Aterosclerose
18.
Eur J Nucl Med Mol Imaging ; 51(8): 2320-2331, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38453729

RESUMO

PURPOSE: The recent development and approval of new diagnostic imaging and therapy approaches in the field of theranostics have revolutionised nuclear medicine practice. To ensure the provision of these new imaging and therapy approaches in a safe and high-quality manner, training of nuclear medicine physicians and qualified specialists is paramount. This is required for trainees who are learning theranostics practice, and for ensuring minimum standards for knowledge and competency in existing practising specialists. METHODS: To address the need for a training curriculum in theranostics that would be utilised at a global level, a Consultancy Meeting was held at the IAEA in May 2023, with participation by experts in radiopharmaceutical therapy and theranostics including representatives of major international organisations relevant to theranostics practice. RESULTS: Through extensive discussions and review of existing curriculum and guidelines, a harmonised training program for theranostics was developed, which aims to ensure safe and high quality theranostics practice in all countries. CONCLUSION: The guiding principles for theranostics training outlined in this paper have immediate relevance for the safe and effective practice of theranostics.


Assuntos
Medicina Nuclear , Humanos , Medicina Nuclear/educação , Nanomedicina Teranóstica , Currículo
19.
Eur J Nucl Med Mol Imaging ; 51(3): 841-851, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947848

RESUMO

BACKGROUND: Historically, patient selection for peptide receptor radionuclide therapy (PRRT) has been performed by virtue of somatostatin receptor scintigraphy (SRS). In recent years, somatostatin receptor positron emission tomography (SSTR-PET) has gradually replaced SRS because of its improved diagnostic capacity, creating an unmet need for SSTR-PET-based selection criteria for PRRT. Tumor-to-blood ratio (TBR) measurements have shown high correlation with the net influx rate Ki, reflecting the tumor somatostatin receptor expression, to a higher degree than standardized uptake value (SUV) measurements. TBR may therefore predict treatment response to PRRT. In addition, changes in semiquantitative SSTR-PET parameters have been shown to predate morphological changes, making them a suitable metric for response assessment. METHODS: The institutional database of the Department of Nuclear Medicine (University Hospital Essen) was searched for NET patients undergoing ≥ 2 PRRT cycles with available baseline and follow-up SSTR-PET. Two blinded independent readers reported the occurrence of new lesions quantified tumor uptake of up to nine lesions per patient using SUV and TBR. The association between baseline TBR and changes in uptake/occurrence of new lesions with progression-free survival (PFS) and overall survival (OS) was tested by use of a Cox regression model and log-rank test. RESULTS: Patients with baseline TBR in the 1st quartile had a shorter PFS (14.4 months) than those in the 3rd (23.7 months; p = 0.03) and 4th (24.1 months; p = 0.02) quartile. Similarly, these patients had significantly shorter OS (32.5 months) than those with baseline TBR in the 2nd (41.8 months; p = 0.03), 3rd (69.2 months; p < 0.01), and 4th (42.7 months; p = 0.03) quartile. Baseline to follow-up increases in TBR were independently associated with shorter PFS when accounting for prognostic markers, e.g., RECIST response (hazard ratio = 2.91 [95%CI = 1.54-5.50]; p = 0.01). This was confirmed with regard to OS (hazard ratio = 1.64 [95%CI = 1.03-2.62]; p = 0.04). Changes in SUVmean were not associated with PFS or OS. CONCLUSIONS: Baseline TBR as well as changes in TBR were significantly associated with PFS and OS and may improve patient selection and morphological response assessment. Future trials need to assess the role of TBR for therapy monitoring also during PRRT and prospectively explore TBR as a predictive marker for patient selection.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/metabolismo , Receptores de Somatostatina/metabolismo , Prognóstico , Intervalo Livre de Progressão , Resultado do Tratamento , Octreotida , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
20.
Eur J Nucl Med Mol Imaging ; 51(5): 1409-1420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108831

RESUMO

PURPOSE: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. METHODS: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. RESULTS: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft's case, tumor growth was delayed by 16-18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. CONCLUSION: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Camundongos , Animais , Cães , Estudo de Prova de Conceito , Microtomografia por Raio-X , Anticorpos Monoclonais Humanizados , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/radioterapia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA