Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(8): 3942-3952, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350647

RESUMO

Aqueous film-forming foams (AFFFs) are used in firefighting applications and often contain per- and polyfluoroalkyl substances (PFAS), which can detrimentally impact environmental and biological health. Incineration is a potential disposal method for AFFFs, which may produce secondary PFAS and other air pollutants. We used online chemical ionization mass spectrometry (CIMS) to measure volatile PFAS emissions from incinerating AFFF concentrate solutions. We quantified perfluorinated carboxylic acids (PFCAs) during the incineration of legacy and contemporary AFFFs. These included trifluoroacetic acid, which reached mg m-3 quantities in the incinerator exhaust. These PFCAs likely arose as products of incomplete combustion of AFFF fluorosurfactants with lower peak furnace temperatures yielding higher PFCA concentrations. We also detected other short-chain PFAS, and other novel chemical products in AFFF combustion emissions. The volatile headspace above AFFF solutions contained larger (C ≥ 8), less oxidized PFAS detected by CIMS. We identified neutral PFAS resembling fluorotelomer surfactants (e.g., fluorotelomer sulfonamide alkylbetaines and fluorotelomer thioether amido sulfonates) and fluorotelomer alcohols in contemporary AFFF headspaces. Directly comparing the distinct chemical spaces of AFFF volatile headspace and combustion byproducts as measured by CIMS provides insight toward the chemistry of PFAS during thermal treatment of AFFFs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Tensoativos/análise , Água , Fluorocarbonos/análise , Ácidos Carboxílicos/análise , Espectrometria de Massas
2.
Environ Sci Technol ; 58(20): 8889-8898, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38685194

RESUMO

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.


Assuntos
Microplásticos , Plásticos , Polietileno/química , Monitoramento Ambiental , Biomarcadores Ambientais
3.
Sensors (Basel) ; 24(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39338651

RESUMO

Accurate measurement of the infrared spectral emissivity of nickel-based alloys is significant for applications in aerospace. The low thermal conductivity of these alloys limits the accuracy of direct emissivity measurement, especially during the oxidation process. To improve measurement accuracy, a surface temperature correction method based on two thermocouples was proposed to eliminate the effect of thermal conductivity changes on emissivity measurement. By using this method, the infrared spectral emissivity of Inconel 601, Inconel 625, and Inconel 718 alloys was accurately measured during the oxidation process, with a temperature range of 673-873 K, a wavelength range of 3-20 µm, and a zenith angle range of 0-80°. The results show that the emissivity of the three alloys is similar in value and variation law; the emissivity of Inconel 718 is slightly less than that of Inconel 601 and Inconel 625; and the spectral emissivity of the three alloys strongly increases in the first hour, whereafter it grows gradually with the increase in oxidation time. Finally, Inconel 601 has a lower emissivity growth rate, which illustrates that it possesses stronger oxidation resistance and thermal stability. The maximum relative uncertainty of the emissivity measurement of the three alloys does not exceed 2.6%, except for the atmospheric absorption wavebands.

4.
Nanotechnology ; 34(25)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958031

RESUMO

Detection of hazardous toxic gases for air pollution monitoring and medical diagnosis has attracted the attention of researchers in order to realize sufficiently sensitive gas sensors. In this paper, we fabricated and characterized a Titanium dioxide (TiO2)-based gas sensor enhanced using the gold nanoparticles. Thermal oxidation and sputter deposition methods were used to synthesize fabricated gas sensor. X-ray diffraction analysis was used to determine the anatase structure of TiO2samples. It was found that the presence of gold nanoparticles on the surface of TiO2enhances the sensitivity response of gas sensors by up to about 40%. The fabricated gas sensor showed a sensitivity of 1.1, 1.07 and 1.03 to 50 ppm of acetone, methanol and ethanol vapors at room temperature, respectively. Additionally, the gold nanoparticles reduce 50 s of response time (about 50% reduction) in the presence of 50 ppm ethanol vapor; and we demonstrated that the recovery time of the gold decorated TiO2sensor is less than 40 s. Moreover, we explain that the improved performance depends on the adsorption-desorption mechanism, and the chemical sensitization and electronic sensitization of gold nanoparticles.

5.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049796

RESUMO

Bio-greases were developed on the basis of vegetable oil obtained from Crambe Abyssinic seeds. An important aspect of this research is to monitor changes in their quality taking place under the influence of external factors. Raman spectroscopy was used to identify changes taking place in the bio-lubricant under the influence of mechanical and thermal forces. The performed tests reflected the operating temperature and friction load that may occur during actual operating conditions for the lubricated friction systems. The Raman spectra provided information on qualitative changes in the structure of the tested bio-lubricants at the molecular level. The integral intensity of the bands used to assess the degree of lipid unsaturation was adopted as the evaluation criterion. The influence of the oxidation process under the PetroOxy and wear test conditions on changes in the structure of the bio-lubricants was assessed. Variation in the integral intensity of the bands (I1655/I1440) proves that the structure of vegetable lubricants changes under the influence of the tests performed. Thermal and mechanical forces influence, the bands originating in unsaturated and result in a decrease in the oxidation resistance of vegetable lubricants.

6.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298984

RESUMO

The integration of active cooling systems in super or hypersonic aircraft using endothermic hydrocarbon fuels is considered an effective way to relieve the thermal management issues caused by overheating. When the temperature of aviation kerosene exceeds 150 °C, the oxidation reaction of fuel is accelerated, forming insoluble deposits that could cause safety hazards. This work investigates the deposition characteristic as well as the morphology of the deposits formed by thermal-stressed Chinese RP-3 aviation kerosene. A microchannel heat transfer simulation device is used to simulate the heat transfer process of aviation kerosene under various conditions. The temperature distribution of the reaction tube was monitored by an infrared thermal camera. The properties and morphology of the deposition were analyzed by scanning electron microscopy and Raman spectroscopy. The mass of the deposits was measured using the temperature-programmed oxidation method. It is observed that the deposition of RP-3 is highly related to dissolved oxygen content (DOC) and temperature. When the outlet temperature increased to 527 °C, the fuel underwent violent cracking reactions, and the structure and morphology of deposition were significantly different from those caused by oxidation. Specifically, this study reveals that the structure of the deposits caused by short-to-medium term oxidation are dense, which is different from long-term oxidative deposits.


Assuntos
Aviação , Querosene , Hidrocarbonetos/química , Microscopia Eletrônica de Varredura , Temperatura
7.
Molecules ; 28(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138512

RESUMO

This study aimed to assess the efficacy of a bacterioruberin-rich carotenoid extract (HAE) derived from the halophilic archaea Halorubrum ezzemoulense DSM 19316 in protecting crude fish oil against thermal oxidation. The research used fish oil derived from anchovies, which had a peroxide value (PV) of 6.44 ± 0.81 meq O2 kg-1. To assess the impact of HAE on the thermal stability and post-oxidation characteristics of fish oil, several concentrations of HAE were added to the fish oil samples: 0 ppm (no additive) (HAE0), 50 ppm (HAE50), 100 ppm (HAE100), 500 ppm (HAE500), and 1000 ppm (HAE1000). Furthermore, a control group was established with the addition of 100 ppm butylated hydroxytoluene (BHT100) in order to evaluate the effectiveness of HAE with a synthetic antioxidant that is commercially available. Prior to the fast oxidation experiment, thermogravimetric analysis was conducted on samples from all experimental groups. At the conclusion of the examination, it was seen that the HAE500 and HAE1000 groups exhibited a delay in the degradation temperature. The experimental groups underwent oxidation at a temperature of 55.0 ± 0.5 °C for a duration of 96 h. The measurement of PV was conducted every 24 h during this time. PV in all experimental groups exhibited a time-dependent rise (p < 0.05). However, the HAE500 group had the lowest PV measurement at the conclusion of the 96 h period (p < 0.05). Significant disparities were detected in the fatty acid compositions of the experimental groups at the completion of the oxidation experiment. The HAE500 group exhibited the highest levels of EPA, DHA, and ΣPUFA at the end of oxidation, with statistical significance (p < 0.05). Through the examination of volatile component analysis, specifically an oxidation marker, it was shown that the HAE500 group exhibited the lowest level of volatile components (p < 0.05). Consequently, it was concluded that the addition of HAE to fish oil provided superior protection compared to BHT at an equivalent rate. Moreover, the group that used 500 ppm HAE demonstrated the highest level of performance in the investigation.


Assuntos
Carotenoides , Óleos de Peixe , Óleos de Peixe/farmacologia , Oxirredução , Carotenoides/farmacologia , Peróxidos/análise , Estresse Oxidativo
8.
Nanotechnology ; 33(37)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35667365

RESUMO

Ta-based high-κdielectrics can be synthesized via the oxidation of TaS2films. In this study, we investigated the wet and dry oxidation of TaS2films via thermal annealing and plasma irradiation, respectively. The specific vibration observed via Raman spectroscopy, the bonding states observed via x-ray photoelectron spectroscopy, and capacitance measurements confirmed the oxidation of TaS2films with a dielectric constant of ∼14.9. Moreover, the electrical transport of the TaS2films along the in-plane direction indicated a change in conductivity before and after the oxidation. The thickness of the oxidized film was estimated. Accordingly, the layer-by-layer oxidation was limited to approximately 50 nm via plasma irradiation, whereas the TaS2films within 150 nm were fully oxidized via thermal annealing in ambient air. Therefore, a Ta-oxide/TaS2structure was fabricated as a stack material of insulator and metal when the thickness of the pristine film was greater than 50 nm. In addition, Ta-oxide films were integrated into bottom-gated two-dimensional (2D) field-effect transistors (FETs) using the dry transfer method. 2D FETs with multilayer MoTe2and MoS2films asp-type andn-type channels, respectively, were successfully fabricated. In particular, the Ta-oxide film synthesized via dry oxidation was used as a gate dielectric, and the device process could be simplified because the Ta-oxide/TaS2heterostructure can function as a stack material for gate insulators and gate electrodes. An anti-ambipolar transistor consisting of an MoTe2/MoS2heterojunction was also fabricated. For the transfer characteristics, a relatively sharp on-state bias range below 10 V and sufficiently high peak-to-valley ratio of 106atVDS = 3 V were obtained using the high-κ gate dielectric of Ta-oxide despite the presence of the multilayer channels (∼20 nm).

9.
Nanotechnology ; 34(10)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36399779

RESUMO

Vertical nanostructure technologies are becoming more important for the down scaling of nanoelectronic devices such as logic transistors or memories. Such devices require dense vertical nanostructured channel arrays (VNCA) that can be fabricated through a top-down approach based on group IV materials. We present progresses on the top-down fabrication of highly anisotropic and ultra-dense Si1-xGex(x= 0, 0.2, 0.5) VNCAs. Dense nanowire and nanosheet patterns were optimized through high resolution lithography and transferred onto Si1-xGexsubstrates by anisotropic reactive ion etching with a fluorine chemistry. The right gas mixtures for a given Ge content resulted in perfectly vertical and dense arrays. Finally we fabricated oxide shell/SiGe core heterostructures by dry- and wet-thermal oxidation and evaluated their applicability for nanostructure size engineering, as already established for silicon nanowires. The impact of the nanostructured shape (wire or sheet), size and Ge content on the oxide growth were investigated and analysed in detail through transmission electron microscopy.

10.
Nanotechnology ; 34(1)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36170800

RESUMO

Thermally oxidized MWCNTs (OMWCNTs) are fabricated by a thermal treatment of MWCNTs at 500 °C for 3 h in an oxygen-containing atmosphere. The oxygen content of OMWCNTs increases from 1.9 wt% for MWCNTs to 8.3 wt%. And the BET specific surface area of OMWCNTs enhances from 254.2 m2g-1for MWCNTs to 496.1 m2g-1. The Fe2O3/OMWCNTs nanocomposite is prepared by a hydrothermal method. Electrochemical measurements show that Fe2O3/OMWCNTs still keeps a highly reversible specific capacity of 653.6 mA h g-1after 200 cycles at 0.5 A g-1, which shows an obviously higher capacity than the sum of that of single Fe2O3and OMWCNTs. The OMWCNTs not only buffer the volume changes of Fe2O3nanoparticles but also provide high-speed electronic transmission channels in the charge-discharge process. The thermal oxidation method of OMWCNTs avoids using strong corrosive acids such as nitric acid and sulfuric acid, which has the advantages of safety, environmental protection, macroscopic preparation, etc.

11.
J Environ Manage ; 316: 115214, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594821

RESUMO

This article deals with the adsorption performances of the unmodified nanodiamond (ND) and thermally oxidized nanodiamond (Ox-ND) for the removal of different heavy metal ions such as Fe (III), Cu (II), Cr (VI), and Cd (II) from wastewater. The adsorption capacities of the ions onto adsorbents are higher and follow the order: Ox-ND-3 > Ox-ND-1.5 > ND, which is consistent with their surface areas, zeta potentials, and the presence of carboxyl groups, suggesting that electrostatic attractions between the positive metal ions and the negatively charged adsorbents are the predominant adsorption mechanisms. Adsorption capacities of these adsorbents were found to be 26.8, 31.3, and 45.7 mg/g for Fe (III), 25.2, 30.5, and 44.5 mg/g for Cu (II), 33.6, 44.1, and 55.9 mg/g for Cr (VI), and 40.9, 52.9, and 67.9 mg/g for Cd (II) over ND, Ox-ND-1.5, and Ox-ND-3, respectively. The impact of various operating parameters such as agitation time, initial metal ion concentration, temperature, pH solution, adsorbent dosage, and coexistence of the metal ions on the adsorption performance of Ox-ND-3 towards Cd (II) ions along with the batch adsorption experiments were performed. The equilibrium was reached in 120 min and adsorption data were fitted well with the pseudo-second-order kinetic as well as the Freundlich isotherm models. Adsorption process was spontaneous and exothermic, while the maximum removal efficiency of Cd (II) ions occurred at pH of 6.9 and at 4 g/L dosage. These findings demonstrated that thermally oxidized nanodiamond (Ox-ND) can be a versatile adsorbent to remove the Cd (II) ions from wastewater.


Assuntos
Metais Pesados , Nanodiamantes , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Águas Residuárias , Água , Poluentes Químicos da Água/análise
12.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500551

RESUMO

Vertical-aligned CuO nanowires have been directly fabricated on Cu foil through a facile thermal oxidation process by a hotplate at 550 °C for 6 h under ambient conditions. The intermediate layer of resorcinol-formaldehyde (RF) and silver (Ag) nanoparticles can be sequentially deposited on Cu nanowires to form CuO@RF@Ag core-shell nanowires by a two-step wet chemical approach. The appropriate resorcinol weight and silver nitrate concentration can be favorable to grow the CuO@RF@Ag nanowires with higher surface-enhanced Raman scattering (SERS) enhancement for detecting rhodamine 6G (R6G) molecules. Compared with CuO@Ag nanowires grown by ion sputtering, CuO@RF@Ag nanowires exhibited a higher SERS enhancement factor of 5.33 × 108 and a lower detection limit (10-12 M) for detecting R6G molecules. This result is ascribed to the CuO@RF@Ag nanowires with higher-density hot spots and surface-active sites for enhanced high SERS enhancement, good reproducibility, and uniformity. Furthermore, the CuO@RF@Ag nanowires can also reveal a high-sensitivity SERS-active substrate for detecting amoxicillin (10-10 M) and 5-fluorouracil (10-7 M). CuO@RF@Ag nanowires exhibit a simple fabrication process, high SERS sensitivity, high reproducibility, high uniformity, and low detection limit, which are helpful for the practical application of SERS in different fields.


Assuntos
Nanopartículas Metálicas , Nanofios , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Prata , Nanofios/química , Formaldeído
13.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388742

RESUMO

Different Ti substrates, such as particles (as-received and ball milled), plate and TEM grid were oxidized for the growth of one dimensional (1D) TiO2nanostructures. The Ti substrates were oxidized for 4 h at temperatures of 700 °C-750 °C in humid and dry Ar containing 5 ppm of O2. The effects of residual stress on the growth of 1D TiO2nanostructures were investigated. The residual stress inside the Ti particles was measured by XRD-sin2ψtechnique. The oxidized Ti substrates were characterized using field emission scanning electron microscope equipped with energy dispersive x-ray spectroscope, transmission electron microscope, x-ray diffractometer and x-ray photoelectron spectroscope. Results revealed that humid environment enhances the growth of 1D TiO2nanostructures. Four different types of 1D morphologies obtained during humid oxidation, e.g. stacked, ribbon, plateau and lamp-post shaped nanostructures. The presence of residual stress significantly enhances the density and coverage of 1D nanostructures. The as-grown TiO2nanostructures possess tetragonal rutile structure having length up to 10µm along the 〈1 0 1〉 directions. During initial stage of oxidation, a TiO2layer is formed on Ti substrate. Lower valence oxides (Ti3O5, Ti2O3and TiO) then form underneath the TiO2layer and induce stress at the interface of oxide layers. The induced stress plays significant role on the growth of 1D TiO2nanostructures. The induced stress is relaxed by creating new surfaces in the form of 1D TiO2nanostructures. A diffusion based model is proposed to explain the mechanism of 1D TiO2growth during humid oxidation of Ti. The 1D TiO2nanostructures and TiO2layer is formed by the interstitial diffusion of Ti4+ions to the surface and reacts with the surface adsorbed hydroxide ions (OH-). Lower valence oxides are formed at the metal-oxide interface by the reaction between diffused oxygen ions and Ti ions.

14.
Nanotechnology ; 33(4)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34644690

RESUMO

We demonstrate the conversion to quasi two-dimensional (2D)ß-Ga2O3by thermally oxidizing layered GaSe of different thicknesses (from bilayer to 100 nm). GaSe flakes were prepared by mechanical exfoliation onto Si with a 300 nm SiO2layer, highly oriented pyrolytic graphite, and mica substrates. The flakes were then annealed in ambient atmosphere at different temperatures ranging from 600 °C to 1000 °C for 30 min. Raman spectroscopy confirmed the formation ofß-Ga2O3in the annealed samples by comparison with the Raman spectrum of aß-Ga2O3reference crystal. Atomic force microscopy was employed to study the morphology and the thickness of theß-Ga2O3flakes. In addition, we used energy dispersive x-ray spectroscopy together with scanning electron microscopy to investigate the evolution of the composition, especially Se residuals, and the sample topography with annealing temperature.ß-Ga2O3appears at temperatures above 600 °C and Se is completely evaporated at temperatures higher than 700 °C. The thicknesses of the resultingß-Ga2O3flakes are half of that of the initial GaSe flake. Here we therefore present a straightforward way to prepare 2Dß-Ga2O3by annealing 2D GaSe.

15.
Environ Res ; 197: 111032, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33757823

RESUMO

In this paper, the fabrication of ZnO tetrapod was investigated. It was synthesized by the thermal oxidation technique using metal zinc powder mixed with oxidizing agents such as hydrogen peroxide (H2O2) and ammonium persulfate ((NH4)2S2O8). The furnace heating temperature reached at 1000 °C in the air. The average diameter and length of a tetrapod leg for mixture with H2O2 from SEM were 45.3 nm and 1.57 µm, respectively. The oxygen vacancy (36%) of ZnO tetrapod with H2O2 was higher than 33% of ZnO tetrapod with only Zn. Growth mechanism of ZnO tetrapod was processed via the formation of Zn nucleus and growing the wurtzite structure. The growing directions of ZnO crystal conformed with the [0001] direction. ZnO tetrapod showed up the high resolution TEM image with the lattice spacing 0.252 nm. From these results, this work was indicated that H2O2 solution was a better oxidizing reaction helper to make ZnO tetrapod nanostructures than anything else.


Assuntos
Nanoestruturas , Óxido de Zinco , Peróxido de Hidrogênio , Nanoestruturas/toxicidade , Nanotecnologia , Oxidantes
16.
Molecules ; 25(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906624

RESUMO

The stability of soybean germ phytosterols (SGPs) in different lipid matrixes, including soybean germ oil, olive oil, and lard, was studied at 120, 150, and 180 °C. Results on the loss rate demonstrated that SGPs were most stable in olive oil, followed by soybean germ oil, and lard in a decreasing order. It is most likely that unsaturated fatty acids could oxidize first, compete with consumption of oxygen, and then spare phytosterols from oxidation. The oxidation products of SGPS in non-oil and oil systems were also quantified. The results demonstrated that at relatively lower temperatures (120 and 150 °C), SGPs' oxidation products were produced the most in the non-oil system, followed by lard, soybean germ oil, and olive oil. This was consistent with the loss rate pattern of SGPs. At a relatively higher temperature of 180 °C, the formation of SGPs' oxidation products in soybean germ oil was quantitatively the same as that in lard, implying that the temperature became a dominative factor rather than the content of unsaturated fatty acids of lipid matrixes in the oxidation of SGPs.


Assuntos
Glycine max/química , Oxirredução , Fitosteróis/química , Temperatura , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos/química , Óleo de Soja/química
17.
Angew Chem Int Ed Engl ; 58(45): 16013-16017, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31269289

RESUMO

Kinetic data, for example, activation energy and reaction order, are crucial for the understanding of chemical reactions and processes. Here, we describe a novel method for obtaining kinetic data based on thermogravimetric measurements (TGA) that exploits in each measurement multiple successive isothermal steps (SIS). We applied this method to the notoriously challenging carbon combustion process for vastly different carbons for oxygen molar fractions between 1.4 % and 90 %. Our obtained apparent EA values are within the wide range of results in the literature and vary in a systematic way with the oxygen partial pressure. The improved accuracy and large amount of obtainable data allowed us to show that the majority of experimentally obtained apparent data for apparent EA are neither in a kinetic regime nor in a diffusion-controlled one but rather in a transition regime.

18.
Chemphyschem ; 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30307706

RESUMO

The thermal behaviour of an H-bonded molecular network A based on [FeII (CN)6 ]4- anions and organic bisamidium cations 12+ was investigated. Heating was found to induce the partial oxidation of [FeII (CN)6 ]4- into [FeIII (CN)6 ]3- , together with a thermochromic effect and also a loss of crystallinity was evidenced from mid and far FT-IR spectroscopic data, XRPD and DSC/TGA analysis. Rehydration also partially reversed the redox reaction and its colour, and after that, a mixture of A with an amorphous phases was observed. FT-IR spectroscopy revealed that the oxidation of Fe(II) was accompanied by a deprotonation of the cation.

19.
Clin Oral Implants Res ; 29(7): 741-755, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29876965

RESUMO

OBJECTIVES: This study aimed to analyze and compare the topographical, chemical, and osseointegration characteristics of a sandblasted acid-etched surface (SLA group), a sandblasted thermally oxidized surface (SO group), and a surface chemically modified by hydrofluoric (HF) acid (SOF group). MATERIALS AND METHODS: Following the preparation and characterization of the relevant surfaces, 90 implants (30 for each group) were placed on the pelvic bone of six sheep. Resonance frequency analysis (RFA), insertion (ITV), removal torque value (RTV), and histomorphometric analyses (BIC%) were performed after three and 8 weeks of healing. The results were analyzed by nonparametric tests (p < 0.05). RESULTS: The roughness value (Ra) in the SOF group was significantly lower than the SLA and the SO group (p = 0.136, p < 0.001, respectively). This resulted in a substantially inferior ITV 14.83 N/cm (SD: 4.04) than those achieved in the SLA and SO groups (19.50 (SD: 6.07) and 20.17 N/cm (SD: 8.95), respectively; p = 0.001). A statistically significant change in the RFA from the baseline (47.36 ISQ, SD: 6.93) to the 3rd week (62.56 ISQ, SD: 5.29) was observed in the SOF group only (p = 0.008). The highest postplacement RFA and RTV values were measured from the SLA group (61.11 ISQ, SD: 7.51 and 78.22 N/cm, SD: 28.73). The early-term (3rd week) BIC% was highest in the SO group (39.93%, SD: 16.14). After 8 weeks, the differences in BIC% values were statistically not significant. CONCLUSIONS: Adjunct HF acid application on the thermally oxidized surface did not provide an additional benefit compared to the sandblasted and acid-etched surface (SLA group).


Assuntos
Corrosão Dentária/métodos , Implantes Dentários , Ácido Fluorídrico/uso terapêutico , Animais , Fenômenos Biomecânicos , Implantação Dentária Endóssea/métodos , Análise do Estresse Dentário , Glicoproteínas de Membrana , Microscopia Eletrônica de Varredura , Osseointegração , Ossos Pélvicos/patologia , Ossos Pélvicos/cirurgia , Receptores de Interleucina-1 , Análise de Frequência de Ressonância , Ovinos , Propriedades de Superfície , Torque
20.
Sensors (Basel) ; 18(7)2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29966244

RESUMO

Gasoline engine oil (SAE 5W-20) was subjected to thermal oxidization (TO) for four periods of time (0 h, 48 h, 96 h and 144 h) and exposed to THz-time domain spectroscopy (TDS) measurement. Error contributions from various error sources, such as repeatability errors, assembly errors of the probe volume and errors caused by the TDS system were evaluated with respect to discernibility and significance of measurement results. The most significant error source was due to modifications of the TDS setup, causing errors in the range of 0.13% of the refractive index for samples with a refractive index around 1.467 and a probe volume length between 5 and 15 mm at 1 THz. The absorption coefficient error was in the range of 8.49% for an absorption around 0.6 cm−1. While the average of measurements taken with different setup configurations did not yield significant differences for different TO times, a single, fixed setup would be able to discern all investigated oil species across the entire frequency range of 0.5⁻2.5 THz. The absorption coefficient measurement showed greater discernibility than the measurement of the refractive index.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA