Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biol Proced Online ; 26(1): 28, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266953

RESUMO

BACKGROUND: Breast cancer poses a significant health risk to women worldwide, with approximately 30% being diagnosed annually in the United States. The identification of cancerous mammary tissues from non-cancerous ones during surgery is crucial for the complete removal of tumors. RESULTS: Our study innovatively utilized machine learning techniques (Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN)) alongside Raman spectroscopy to streamline and hasten the differentiation of normal and late-stage cancerous mammary tissues in mice. The classification accuracy rates achieved by these models were 94.47% for RF, 96.76% for SVM, and 97.58% for CNN, respectively. To our best knowledge, this study was the first effort in comparing the effectiveness of these three machine-learning techniques in classifying breast cancer tissues based on their Raman spectra. Moreover, we innovatively identified specific spectral peaks that contribute to the molecular characteristics of the murine cancerous and non-cancerous tissues. CONCLUSIONS: Consequently, our integrated approach of machine learning and Raman spectroscopy presents a non-invasive, swift diagnostic tool for breast cancer, offering promising applications in intraoperative settings.

2.
Acta Neurochir (Wien) ; 166(1): 343, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167233

RESUMO

BACKGROUND: The intraoperative differentiation between tumour tissue, healthy brain tissue, and any sensitive structure of the central nervous system is carried out in modern neurosurgery using various multimodal technologies such as neuronavigation, fluorescent dyes, intraoperative ultrasound or the use of intraoperative MRI, but also the haptic experience of the neurosurgeon. Supporting the surgeon by developing instruments with integrated haptics could provide a further objective dimension in the intraoperative recognition of healthy and diseased tissue. METHODS: In this study, we describe intraoperative mechanical indentation measurements of human brain tissue samples of different tumours taken during neurosurgical operation and measured directly in the operating theatre, in a time frame of maximum five minutes. We present an overview of the Young's modulus for the different brain tumour entities and potentially differentiation between them. RESULTS: We examined 238 samples of 75 tumour removals. Neither a clear distinction of tumour tissue against healthy brain tissue, nor differentiation of different tumour entities was possible on solely the Young's modulus. Correlation between the stiffness grading of the surgeon and our measurements could be found. CONCLUSION: The mechanical behaviour of brain tumours given by the measured Young's modulus corresponds well to the stiffness assessment of the neurosurgeon and can be a great tool for further information on mechanical characteristics of brain tumour tissue. Nevertheless, our findings imply that the information gained through indentation is limited.


Assuntos
Neoplasias Encefálicas , Módulo de Elasticidade , Procedimentos Neurocirúrgicos , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Procedimentos Neurocirúrgicos/métodos , Encéfalo/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
J Wound Care ; 33(5): 368-378, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38683775

RESUMO

OBJECTIVE: Accurate assessment of pressure injuries (PIs) is necessary for a good outcome. Junior and non-specialist nurses have less experience with PIs and lack clinical practice, and so have difficulty staging them accurately. In this work, a deep learning-based system for PI staging and tissue classification is proposed to help improve its accuracy and efficiency in clinical practice, and save healthcare costs. METHOD: A total of 1610 cases of PI and their corresponding photographs were collected from clinical practice, and each sample was accurately staged and the tissues labelled by experts for training a Mask Region-based Convolutional Neural Network (Mask R-CNN, Facebook Artificial Intelligence Research, Meta, US) object detection and instance segmentation network. A recognition system was set up to automatically stage and classify the tissues of the remotely uploaded PI photographs. RESULTS: On a test set of 100 samples, the average precision of this model for stage recognition reached 0.603, which exceeded that of the medical personnel involved in the comparative evaluation, including an enterostomal therapist. CONCLUSION: In this study, the deep learning-based PI staging system achieved the evaluation performance of a nurse with professional training in wound care. This low-cost system could help overcome the difficulty of identifying PIs by junior and non-specialist nurses, and provide valuable auxiliary clinical information.


Assuntos
Aprendizado Profundo , Úlcera por Pressão , Humanos , Úlcera por Pressão/enfermagem , Redes Neurais de Computação , Masculino , Feminino
4.
Lasers Surg Med ; 55(2): 208-225, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36515355

RESUMO

BACKGROUND: Duodenal gastrinomas (DGASTs) are neuroendocrine tumors that develop in the submucosa of the duodenum and produce the hormone gastrin. Surgical resection of DGASTs is complicated by the small size of these tumors and the tendency for them to develop diffusely in the duodenum. Endoscopic mucosal resection of DGASTs is an increasingly popular method for treating this disease due to its low complication rate but suffers from poor rates of pathologically negative margins. Multiphoton microscopy can capture high-resolution images of biological tissue with contrast generated from endogenous fluorescence (autofluorescence [AF]) through two-photon excited fluorescence (2PEF). Second harmonic generation is another popular method of generating image contrast with multiphoton microscopy (MPM) and is a light-scattering phenomenon that occurs predominantly from structures such as collagen in biological samples. Some molecules that contribute to AF change in abundance from processes related to the cancer disease process (e.g., metabolic changes, oxidative stress, and angiogenesis). STUDY DESIGN/MATERIALS AND METHODS: MPM was used to image 12 separate patient samples of formalin-fixed and paraffin-embedded duodenal gastrinoma slides with a second-harmonic generation (SHG) channel and four 2PEF channels. The excitation and emission profiles of each 2PEF channel were tuned to capture signal dominated by distinct fluorophores with well-characterized fluorescent spectra and known connections to the physiologic changes that arise in cancerous tissue. RESULTS: We found that there was a significant difference in the relative abundance of signal generated in the 2PEF channels for regions of DGASTs in comparison to the neighboring tissues of the duodenum. Data generated from texture feature extraction of the MPM images were used in linear discriminant analysis models to create classifiers for tumor versus all other tissue types before and after principal component analysis (PCA). PCA improved the classifier accuracy and reduced the number of features required to achieve maximum accuracy. The linear discriminant classifier after PCA distinguished between tumor and other tissue types with an accuracy of 90.6%-93.8%. CONCLUSIONS: These results suggest that multiphoton microscopy 2PEF and SHG imaging is a promising label-free method for discriminating between DGASTs and normal duodenal tissue which has implications for future applications of in vivo assessment of resection margins with endoscopic MPM.


Assuntos
Gastrinoma , Neoplasias Pancreáticas , Humanos , Gastrinoma/diagnóstico por imagem , Gastrinoma/cirurgia , Microscopia , Endoscopia , Margens de Excisão , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Microscopia de Fluorescência por Excitação Multifotônica/métodos
5.
Sensors (Basel) ; 23(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067671

RESUMO

This article provides a comprehensive analysis of the feature extraction methods applied to vibro-acoustic signals (VA signals) in the context of robot-assisted interventions. The primary objective is to extract valuable information from these signals to understand tissue behaviour better and build upon prior research. This study is divided into three key stages: feature extraction using the Cepstrum Transform (CT), Mel-Frequency Cepstral Coefficients (MFCCs), and Fast Chirplet Transform (FCT); dimensionality reduction employing techniques such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP); and, finally, classification using a nearest neighbours classifier. The results demonstrate that using feature extraction techniques, especially the combination of CT and MFCC with dimensionality reduction algorithms, yields highly efficient outcomes. The classification metrics (Accuracy, Recall, and F1-score) approach 99%, and the clustering metric is 0.61. The performance of the CT-UMAP combination stands out in the evaluation metrics.


Assuntos
Robótica , Algoritmos , Acústica , Análise por Conglomerados , Análise de Componente Principal
6.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36991854

RESUMO

The direct tactile assessment of surface textures during palpation is an essential component of open surgery that is impeded in minimally invasive and robot-assisted surgery. When indirectly palpating with a surgical instrument, the structural vibrations from this interaction contain tactile information that can be extracted and analysed. This study investigates the influence of the parameters contact angle α and velocity v→ on the vibro-acoustic signals from this indirect palpation. A 7-DOF robotic arm, a standard surgical instrument, and a vibration measurement system were used to palpate three different materials with varying α and v→. The signals were processed based on continuous wavelet transformation. They showed material-specific signatures in the time-frequency domain that retained their general characteristic for varying α and v→. Energy-related and statistical features were extracted, and supervised classification was performed, where the testing data comprised only signals acquired with different palpation parameters than for training data. The classifiers support vector machine and k-nearest neighbours provided 99.67% and 96.00% accuracy for the differentiation of the materials. The results indicate the robustness of the features against variations in the palpation parameters. This is a prerequisite for an application in minimally invasive surgery but needs to be confirmed in realistic experiments with biological tissues.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Procedimentos Cirúrgicos Robóticos/métodos , Robótica/métodos , Tato , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Palpação , Acústica
7.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068905

RESUMO

Raman spectroscopy has emerged as a powerful tool in medical, biochemical, and biological research with high specificity, sensitivity, and spatial and temporal resolution. Recent advanced Raman systems, such as portable Raman systems and fiber-optic probes, provide the potential for accurate in vivo discrimination between healthy and cancerous tissues. In our study, a portable Raman probe spectrometer was tested in immunosuppressed mice for the in vivo localization of colorectal cancer malignancies from normal tissue margins. The acquired Raman spectra were preprocessed, and principal component analysis (PCA) was performed to facilitate discrimination between malignant and normal tissues and to highlight their biochemical differences using loading plots. A transfer learning model based on a one-dimensional convolutional neural network (1D-CNN) was employed for the Raman spectra data to assess the classification accuracy of Raman spectra in live animals. The 1D-CNN model yielded an 89.9% accuracy and 91.4% precision in tissue classification. Our results contribute to the field of Raman spectroscopy in cancer diagnosis, highlighting its promising role within clinical applications.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Animais , Camundongos , Análise Espectral Raman/métodos , Redes Neurais de Computação , Neoplasias Colorretais/diagnóstico
8.
Lasers Surg Med ; 54(2): 289-304, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34481417

RESUMO

OBJECTIVES: Laser surgery requires efficient tissue classification to reduce the probability of undesirable or unwanted tissue damage. This study aimed to investigate acoustic shock waves (ASWs) as a means of classifying sciatic nerve tissue. MATERIALS AND METHODS: In this study, we classified sciatic nerve tissue against other tissue types-hard bone, soft bone, fat, muscle, and skin extracted from two proximal and distal fresh porcine femurs-using the ASWs generated by a laser during ablation. A nanosecond frequency-doubled Nd:YAG laser at 532 nm was used to create 10 craters on each tissue type's surface. We used a fiber-coupled Fabry-Pérot sensor to measure the ASWs. The spectrum's amplitude from each ASW frequency band measured was used as input for principal component analysis (PCA). PCA was combined with an artificial neural network to classify the tissue types. A confusion matrix and receiver operating characteristic (ROC) analysis was used to calculate the accuracy of the testing-data-based scores from the sciatic nerve and the area under the ROC curve (AUC) with a 95% confidence-level interval. RESULTS: Based on the confusion matrix and ROC analysis of the model's tissue classification results (leave-one-out cross-validation), nerve tissue could be classified with an average accuracy rate and AUC result of 95.78  ± 1.3% and 99.58  ± 0.6%, respectively. CONCLUSION: This study demonstrates the potential of using ASWs for remote classification of nerve and other tissue types. The technique can serve as the basis of a feedback control system to detect and preserve sciatic nerves in endoscopic laser surgery.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Animais , Terapia a Laser/métodos , Lasers de Estado Sólido/uso terapêutico , Análise de Componente Principal , Nervo Isquiático/cirurgia , Suínos
9.
Magn Reson Med ; 85(4): 1881-1894, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33040404

RESUMO

PURPOSE: Tissue segmentation from T1 -weighted (T1W) MRI is a critical requirement in many neuroscience and clinical applications. However, accurate tissue segmentation is challenging because of the variabilities in tissue intensity profiles caused by differences in scanner models, acquisition protocols, and age. In addition, many methods assume healthy anatomy and fail in the presence of pathology such as white matter hyperintensities (WMHs). We present BISON (Brain tISsue segmentatiON), a new pipeline for tissue segmentation using a random forest classifier and a set of intensity and location priors based on T1W MRI. METHODS: BISON was developed and cross-validated using multiscanner manual labels of 72 subjects aged 5 to 96 years. We also assessed the test-retest reliability of BISON on two data sets: 20 subjects with scan/rescan MR images and manual segmentations and 90 scans from a single individual. The results were compared against Atropos, a state-of-the-art commonly used tissue classification method from advanced normalization tools (ANTs). RESULTS: BISON cross-validation dice kappa values against manual segmentations of 72 MRI volumes yielded κGM = 0.88, κWM = 0.85, κCSF = 0.77, outperforming Atropos (κGM = 0.79, κWM = 0.84, κCSF = 0.64), test-retest values on 20 subjects of κGM = 0.94, κWM = 0.92, κCSF = 0.77 outperforming both manual (κGM = 0.92, κWM = 0.91, κCSF =0.74) and Atropos (κGM = 0.87, κWM = 0.92, κCSF = 0.79). Finally, BISON outperformed Atropos, FAST (fast automated segmentation tool) from the FMRIB (Functional Magnetic Resonance Imaging of the Brain) Software Library, and SPM12 (statistical parametric mapping 12) in the presence of WMHs. CONCLUSION: BISON can provide accurate and robust segmentations in data from various age ranges and scanner models, making it ideal for performing tissue classification in large multicenter and multiscanner databases.


Assuntos
Bison , Processamento de Imagem Assistida por Computador , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
10.
Lasers Surg Med ; 53(3): 377-389, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32614077

RESUMO

BACKGROUND AND OBJECTIVES: Using lasers instead of mechanical tools for bone cutting holds many advantages, including functional cuts, contactless interaction, and faster wound healing. To fully exploit the benefits of lasers over conventional mechanical tools, a real-time feedback to classify tissue is proposed. STUDY DESIGN/MATERIALS AND METHODS: In this paper, we simultaneously classified five tissue types-hard and soft bone, muscle, fat, and skin from five proximal and distal fresh porcine femurs-based on the laser-induced acoustic shock waves (ASWs) generated. For laser ablation, a nanosecond frequency-doubled Nd:YAG laser source at 532 nm and a microsecond Er:YAG laser source at 2940 nm were used to create 10 craters on the surface of each proximal and distal femur. Depending on the application, the Nd:YAG or Er:YAG can be used for bone cutting. For ASW recording, an air-coupled transducer was placed 5 cm away from the ablated spot. For tissue classification, we analyzed the measured acoustics by looking at the amplitude-frequency band of 0.11-0.27 and 0.27-0.53 MHz, which provided the least average classification error for Er:YAG and Nd:YAG, respectively. For data reduction, we used the amplitude-frequency band as an input of the principal component analysis (PCA). On the basis of PCA scores, we compared the performance of the artificial neural network (ANN), the quadratic- and Gaussian-support vector machine (SVM) to classify tissue types. A set of 14,400 data points, measured from 10 craters in four proximal and distal femurs, was used as training data, while a set of 3,600 data points from 10 craters in the remaining proximal and distal femur was considered as testing data, for each laser. RESULTS: The ANN performed best for both lasers, with an average classification error for all tissues of 5.01 ± 5.06% and 9.12 ± 3.39%, using the Nd:YAG and Er:YAG lasers, respectively. Then, the Gaussian-SVM performed better than the quadratic SVM during the cutting with both lasers. The Gaussian-SVM yielded average classification errors of 15.17 ± 13.12% and 16.85 ± 7.59%, using the Nd:YAG and Er:YAG lasers, respectively. The worst performance was achieved with the quadratic-SVM with a classification error of 50.34 ± 35.04% and 69.96 ± 25.49%, using the Nd:YAG and Er:YAG lasers. CONCLUSION: We foresee using the ANN to differentiate tissues in real-time during laser osteotomy. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Animais , Lasers de Estado Sólido/uso terapêutico , Aprendizado de Máquina , Osteotomia , Suínos , Transdutores
11.
Neuroimage ; 217: 116928, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32413463

RESUMO

BACKGROUND: Gray and white matter volume difference and change are important imaging markers of pathology and disease progression in neurology and psychiatry. Such measures are usually estimated from tissue segmentation maps produced by publicly available image processing pipelines. However, the reliability of the produced segmentations when using multi-center and multi-scanner data remains understudied. Here, we assess the robustness of six publicly available tissue classification pipelines across images acquired from different MR scanners and sites. METHODS: We used 90 T1-weighted images of a single individual, scanned in 73 sessions across 27 different sites to assess the robustness of the tissue classification tools. Variability in Dice similarity index values and tissue volumes was assessed for Atropos, BISON, Classify_Clean, FAST, FreeSurfer, and SPM12. RESULTS: BISON had the highest overall Dice coefficient for GM, followed by SPM12 and Atropos; while Atropos had the highest overall Dice coefficient for WM, followed by BISON and SPM12. BISON had the lowest overall variability in its volumetric estimates, followed by FreeSurfer, and SPM12. All methods also had significant differences between some of their estimates across different scanner manufacturers (e.g. BISON had significantly higher GM estimates and correspondingly lower WM estimates for GE scans compared to Philips and Siemens), and different signal-to-noise ratio (SNR) levels (e.g. FAST and FreeSurfer had significantly higher WM volume estimates for high versus medium and low SNR tertiles as well as correspondingly lower GM volume estimates). CONCLUSIONS: Our comparisons provide a benchmark on the reliability of the publicly used tissue classification techniques and the amount of variability that can be expected when using large multi-center and multi-scanner databases.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Mapeamento Encefálico , Líquido Cefalorraquidiano/fisiologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Software , Substância Branca/diagnóstico por imagem
12.
Mult Scler ; 26(10): 1217-1226, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31190607

RESUMO

OBJECTIVE: To investigate the performance of deep learning (DL) based on fully convolutional neural network (FCNN) in segmenting brain tissues in a large cohort of multiple sclerosis (MS) patients. METHODS: We developed a FCNN model to segment brain tissues, including T2-hyperintense MS lesions. The training, validation, and testing of FCNN were based on ~1000 magnetic resonance imaging (MRI) datasets acquired on relapsing-remitting MS patients, as a part of a phase 3 randomized clinical trial. Multimodal MRI data (dual-echo, FLAIR, and T1-weighted images) served as input to the network. Expert validated segmentation was used as the target for training the FCNN. We cross-validated our results using the leave-one-center-out approach. RESULTS: We observed a high average (95% confidence limits) Dice similarity coefficient for all the segmented tissues: 0.95 (0.92-0.98) for white matter, 0.96 (0.93-0.98) for gray matter, 0.99 (0.98-0.99) for cerebrospinal fluid, and 0.82 (0.63-1.0) for T2 lesions. High correlations between the DL segmented tissue volumes and ground truth were observed (R2 > 0.92 for all tissues). The cross validation showed consistent results across the centers for all tissues. CONCLUSION: The results from this large-scale study suggest that deep FCNN can automatically segment MS brain tissues, including lesions, with high accuracy.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Redes Neurais de Computação
13.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291409

RESUMO

The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D-2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D-2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Imageamento Hiperespectral , Redes Neurais de Computação
14.
Entropy (Basel) ; 22(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-33286511

RESUMO

Biological tissue identification in real clinical scenarios is a relevant and unsolved medical problem, particularly in the operating room. Although it could be thought that healthy tissue identification is an immediate task, in practice there are several clinical situations that greatly impede this process. For instance, it could be challenging in open surgery in complex areas, such as the neck, where different structures are quite close together, with bleeding and other artifacts affecting visual inspection. Solving this issue requires, on one hand, a high contrast noninvasive technique and, on the other hand, powerful classification algorithms. Regarding the technique, optical diffuse reflectance spectroscopy has demonstrated such capabilities in the discrimination of tumoral and healthy biological tissues. The complex signals obtained, in the form of spectra, need to be adequately computed in order to extract relevant information for discrimination. As usual, accurate discrimination relies on massive measurements, some of which serve as training sets for the classification algorithms. In this work, diffuse reflectance spectroscopy is proposed, implemented, and tested as a potential technique for healthy tissue discrimination. A specific setup is built and spectral measurements on several ex vivo porcine tissues are obtained. The massive data obtained are then analyzed for classification purposes. First of all, considerations about normalization, detrending and noise are taken into account. Dimensionality reduction and tendencies extraction are also considered. Featured spectral characteristics, principal component or linear discrimination analysis are applied, as long as classification approaches based on k-nearest neighbors (k-NN), quadratic discrimination analysis (QDA) or Naïve Bayes (NB). Relevant parameters about classification accuracy are obtained and compared, including ANOVA tests. The results show promising values of specificity and sensitivity of the technique for some classification algorithms, even over 95%, which could be relevant for clinical applications in the operating room.

15.
Lasers Surg Med ; 49(3): 258-269, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28264146

RESUMO

BACKGROUND AND OBJECTIVE: Breast cancer is one of the most common cancers, and recognized as the third leading cause of mortality in women. Optical coherence tomography (OCT) enables three dimensional visualization of biological tissue with micrometer level resolution at high speed, and can play an important role in early diagnosis and treatment guidance of breast cancer. In particular, ultra-high resolution (UHR) OCT provides images with better histological correlation. This paper compared UHR OCT performance with standard OCT in breast cancer imaging qualitatively and quantitatively. Automatic tissue classification algorithms were used to automatically detect invasive ductal carcinoma in ex vivo human breast tissue. STUDY DESIGN/MATERIALS AND METHODS: Human breast tissues, including non-neoplastic/normal tissues from breast reduction and tumor samples from mastectomy specimens, were excised from patients at Columbia University Medical Center. The tissue specimens were imaged by two spectral domain OCT systems at different wavelengths: a home-built ultra-high resolution (UHR) OCT system at 800 nm (measured as 2.72 µm axial and 5.52 µm lateral) and a commercial OCT system at 1,300 nm with standard resolution (measured as 6.5 µm axial and 15 µm lateral), and their imaging performances were analyzed qualitatively. Using regional features derived from OCT images produced by the two systems, we developed an automated classification algorithm based on relevance vector machine (RVM) to differentiate hollow-structured adipose tissue against solid tissue. We further developed B-scan based features for RVM to classify invasive ductal carcinoma (IDC) against normal fibrous stroma tissue among OCT datasets produced by the two systems. For adipose classification, 32 UHR OCT B-scans from 9 normal specimens, and 28 standard OCT B-scans from 6 normal and 4 IDC specimens were employed. For IDC classification, 152 UHR OCT B-scans from 6 normal and 13 IDC specimens, and 104 standard OCT B-scans from 5 normal and 8 IDC specimens were employed. RESULTS: We have demonstrated that UHR OCT images can produce images with better feature delineation compared with images produced by 1,300 nm OCT system. UHR OCT images of a variety of tissue types found in human breast tissue were presented. With a limited number of datasets, we showed that both OCT systems can achieve a good accuracy in identifying adipose tissue. Classification in UHR OCT images achieved higher sensitivity (94%) and specificity (93%) of adipose tissue than the sensitivity (91%) and specificity (76%) in 1,300 nm OCT images. In IDC classification, similarly, we achieved better results with UHR OCT images, featured an overall accuracy of 84%, sensitivity of 89% and specificity of 71% in this preliminary study. CONCLUSION: In this study, we provided UHR OCT images of different normal and malignant breast tissue types, and qualitatively and quantitatively studied the texture and optical features from OCT images of human breast tissue at different resolutions. We developed an automated approach to differentiate adipose tissue, fibrous stroma, and IDC within human breast tissues. Our work may open the door toward automatic intraoperative OCT evaluation of early-stage breast cancer. Lasers Surg. Med. 49:258-269, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Mama/diagnóstico por imagem , Imageamento Tridimensional , Tomografia de Coerência Óptica/métodos , Biópsia por Agulha , Mama/patologia , Neoplasias da Mama/patologia , Estudos Transversais , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Mastectomia/métodos , Valores de Referência , Estudos de Amostragem
16.
J Med Syst ; 40(3): 68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26728394

RESUMO

Telemedicine helps to deliver health services electronically to patients with the advancement of communication systems and health informatics. Chronic wound (CW) detection and its healing rate assessment at remote distance is very much difficult due to unavailability of expert doctors. This problem generally affects older ageing people. So there is a need of better assessment facility to the remote people in telemedicine framework. Here we have proposed a CW tissue prediction and diagnosis under telemedicine framework to classify the tissue types using linear discriminant analysis (LDA). The proposed telemedicine based wound tissue prediction (TWTP) model is able to identify wound tissue and correctly predict the wound status with a good degree of accuracy. The overall performance of the proposed wound tissue prediction methodology has been measured based on ground truth images. The proposed methodology will assist the clinicians to take better decision towards diagnosis of CW in terms of quantitative information of three types of tissue composition at low-resource set-up.


Assuntos
Lógica Fuzzy , Processamento de Imagem Assistida por Computador/métodos , Telemedicina/métodos , Cicatrização/fisiologia , Ferimentos e Lesões/classificação , Doença Crônica , Humanos , Valor Preditivo dos Testes , Fatores de Tempo
17.
Surg Innov ; 22(6): 557-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25652527

RESUMO

BACKGROUND: In colorectal surgery, detecting ureters and mesenteric arteries is of utmost importance to prevent iatrogenic injury and to facilitate intraoperative decision making. A tool enabling ureter- and artery-specific image enhancement within (and possibly through) surrounding adipose tissue would facilitate this need, especially during laparoscopy. To evaluate the potential of hyperspectral imaging in colorectal surgery, we explored spectral tissue signatures using single-spot diffuse reflectance spectroscopy (DRS). As hyperspectral cameras with silicon (Si) and indium gallium arsenide (InGaAs) sensor chips are becoming available, we investigated spectral distinctive features for both sensor ranges. METHODS: In vivo wide-band (wavelength range 350-1830 nm) DRS was performed during open colorectal surgery. From the recorded spectra, 36 features were extracted at predefined wavelengths: 18 gradients and 18 amplitude differences. For classification of respectively ureter and artery in relation to surrounding adipose tissue, the best distinctive feature was selected using binary logistic regression for Si- and InGaAs-sensor spectral ranges separately. Classification performance was evaluated by leave-one-out cross-validation. RESULTS: In 10 consecutive patients, 253 spectra were recorded on 53 tissue sites (including colon, adipose tissue, muscle, artery, vein, ureter). Classification of ureter versus adipose tissue revealed accuracy of 100% for both Si range and InGaAs range. Classification of artery versus surrounding adipose tissue revealed accuracies of 95% (Si) and 89% (InGaAs). CONCLUSIONS: Intraoperative DRS showed that Si and InGaAs sensors are equally suited for automated classification of ureter versus surrounding adipose tissue. Si sensors seem better suited for classifying artery versus mesenteric adipose tissue. Progress toward hyperspectral imaging within this field is promising.


Assuntos
Cirurgia Colorretal/métodos , Análise Espectral/métodos , Cirurgia Assistida por Computador/métodos , Tecido Adiposo/química , Idoso , Idoso de 80 Anos ou mais , Arsenicais , Feminino , Gálio , Humanos , Índio , Masculino , Artérias Mesentéricas/química , Pessoa de Meia-Idade , Silício , Ureter/química
18.
J Biomed Opt ; 29(2): 027001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361507

RESUMO

Significance: Accurately distinguishing tumor tissue from normal tissue is crucial to achieve complete resections during soft tissue sarcoma (STS) surgery while preserving critical structures. Incomplete tumor resections are associated with an increased risk of local recurrence and worse patient prognosis. Aim: We evaluate the performance of diffuse reflectance spectroscopy (DRS) to distinguish tumor tissue from healthy tissue in STSs. Approach: DRS spectra were acquired from different tissue types on multiple locations in 20 freshly excised sarcoma specimens. A k-nearest neighbors classification model was trained to predict the tissue types of the measured locations, using binary and multiclass approaches. Results: Tumor tissue could be distinguished from healthy tissue with a classification accuracy of 0.90, sensitivity of 0.88, and specificity of 0.93 when well-differentiated liposarcomas were included. Excluding this subtype, the classification performance increased to an accuracy of 0.93, sensitivity of 0.94, and specificity of 0.93. The developed model showed a consistent performance over different histological subtypes and tumor locations. Conclusions: Automatic tissue discrimination using DRS enables real-time intra-operative guidance, contributing to more accurate STS resections.


Assuntos
Sarcoma , Humanos , Análise Espectral/métodos , Prognóstico , Sarcoma/diagnóstico por imagem , Sarcoma/cirurgia
19.
J Orthop Res ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269140

RESUMO

This study applied radiomics to MRI data for automated classification of soft tissue abnormalities near total hip arthroplasty (THA). A total of 126 subjects with 1.5 T MRI of symptomatic THA were included in the analysis. Peri-prosthetic soft tissue regions of interest were manually segmented and classified by an expert radiologist. An established radiomics library was used to extract 96 features from 2D image patches across segmented regions. Logistic regression was employed as the primary radiomic classifier, achieving an average area under curve (AUC) of 0.71 in differentiating tissue classifications spanning normal, infected, and several inflammatory, noninfectious categories. Notably, infection cases were identified with the highest accuracy, attaining an AUC of 0.79. Statement of Clinical Significance: This study demonstrates that radiomics applied to MRI data can effectively automate the classification of soft tissue abnormalities in symptomatic total hip arthroplasty, particularly in differentiating periprosthetic infections.

20.
J Biomed Opt ; 29(4): 045006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665316

RESUMO

Significance: During breast-conserving surgeries, it is essential to evaluate the resection margins (edges of breast specimen) to determine whether the tumor has been removed completely. In current surgical practice, there are no methods available to aid in accurate real-time margin evaluation. Aim: In this study, we investigated the diagnostic accuracy of diffuse reflectance spectroscopy (DRS) combined with tissue classification models in discriminating tumorous tissue from healthy tissue up to 2 mm in depth on the actual resection margin of in vivo breast tissue. Approach: We collected an extensive dataset of DRS measurements on ex vivo breast tissue and in vivo breast tissue, which we used to develop different classification models for tissue classification. Next, these models were used in vivo to evaluate the performance of DRS for tissue discrimination during breast conserving surgery. We investigated which training strategy yielded optimum results for the classification model with the highest performance. Results: We achieved a Matthews correlation coefficient of 0.76, a sensitivity of 96.7% (95% CI 95.6% to 98.2%), a specificity of 90.6% (95% CI 86.3% to 97.9%) and an area under the curve of 0.98 by training the optimum model on a combination of ex vivo and in vivo DRS data. Conclusions: DRS allows real-time margin assessment with a high sensitivity and specificity during breast-conserving surgeries.


Assuntos
Neoplasias da Mama , Mama , Margens de Excisão , Mastectomia Segmentar , Análise Espectral , Humanos , Feminino , Neoplasias da Mama/cirurgia , Neoplasias da Mama/diagnóstico por imagem , Mastectomia Segmentar/métodos , Análise Espectral/métodos , Mama/diagnóstico por imagem , Mama/cirurgia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA