Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Invest ; 41(9): 789-802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37909664

RESUMO

We assessed the efficacy, tolerability, and cost-effectiveness of a novel neoadjuvant regimen comprising docetaxel-cyclophosphamide alternating with epirubicin-cisplatin (ddDCEP) administered biweekly for 16 weeks in 116 patients with early triple-negative breast cancer. This regimen achieved a high pathological complete response (ypT0/TisN0) rate of 55.2% and favorable survival outcomes (30-month event-free survival, 91.2%; overall survival, 97%). Febrile neutropenia was observed in 4.3% of patients, and 98% completed at least six of eight cycles. ddDCEP was more cost-effective than contemporary carboplatin-based regimens. This novel approach offers an economically viable and effective alternative to current chemoimmunotherapy regimens, and merits further investigation.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Docetaxel/uso terapêutico , Epirubicina/uso terapêutico , Cisplatino/efeitos adversos , Platina/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Taxoides/efeitos adversos , Resultado do Tratamento , Ciclofosfamida/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Terapia Neoadjuvante
2.
Cancer Cell Int ; 21(1): 419, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376211

RESUMO

Triple-negative breast cancer (TNBC) is not as prevalent as hormone receptor or HER2-positive breast cancers and all receptor tests come back negative. More importantly, the heterogeneity and complexity of the TNBC on the molecular and clinical levels have limited the successful development of novel therapeutic strategies and led to intrinsic or developed resistance to chemotherapies and new therapeutic agents. Studies have demonstrated deregulation of Wnt/ß-catenin signaling in tumorigenesis which plays decisive roles at the low survival rate of patients and facilitates resistance to currently existing therapies. This review summarizes mechanisms of Wnt/ß-catenin signaling for resistance development in TNBC, the complex interaction between Wnt/ß-catenin signaling, and the transactivated receptor tyrosine kinase (RTK) signaling pathways, lymphocytic infiltration, epithelial-mesenchymal transition (EMT), and induction of metastasis. Such associations and how these pathways interact in the development and progression of cancer have led to the careful analysis and development of new and effective combination therapies without generating significant toxicity and resistance.

3.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500854

RESUMO

Patients with triple negative breast cancers (TNBCs)-highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors-have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.


Assuntos
Antineoplásicos/química , Trióxido de Arsênio/química , Cisplatino/química , Iodetos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistência a Medicamentos , Quimioterapia Combinada , Humanos , Iodetos/farmacologia , Conformação Molecular , Preparações Farmacêuticas , Análise Espacial , Relação Estrutura-Atividade
4.
Breast Cancer Res ; 22(1): 42, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375854

RESUMO

BACKGROUND: Stromal and collagen biology has a significant impact on tumorigenesis and metastasis. Collagen is a major structural extracellular matrix component in breast cancer, but its role in cancer progression is the subject of historical debate. Collagen may represent a protective layer that prevents cancer cell migration, while increased stromal collagen has been demonstrated to facilitate breast cancer metastasis. METHODS: Stromal remodeling is characterized by collagen fiber restructuring and realignment in stromal and tumoral areas. The patients in our study were diagnosed with triple-negative breast cancer in Singapore General Hospital from 2003 to 2015. We designed novel image processing and quantification pipelines to profile collagen structures using numerical imaging parameters. Our solution differentiated the collagen into two distinct modes: aggregated thick collagen (ATC) and dispersed thin collagen (DTC). RESULTS: Extracted parameters were significantly associated with bigger tumor size and DCIS association. Of numerical parameters, ATC collagen fiber density (CFD) and DTC collagen fiber length (CFL) were of significant prognostic value for disease-free survival and overall survival for the TNBC patient cohort. Using these two parameters, we built a predictive model to stratify the patients into four groups. CONCLUSIONS: Our study provides a novel insight for the quantitation of collagen in the tumor microenvironment and will help predict clinical outcomes for TNBC patients. The identified collagen parameters, ATC CFD and DTC CFL, represent a new direction for clinical prognosis and precision medicine. We also compared our result with benign samples and DICS samples to get novel insight about the TNBC heterogeneity. The improved understanding of collagen compartment of TNBC may provide insights into novel targets for better patient stratification and treatment.


Assuntos
Colágeno/ultraestrutura , Matriz Extracelular/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Colágeno/metabolismo , Intervalo Livre de Doença , Matriz Extracelular/metabolismo , Feminino , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Taxa de Sobrevida , Análise Serial de Tecidos/métodos
5.
Mol Biol Rep ; 46(6): 6617-6624, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31552595

RESUMO

FEC chemo-resistance in triple negative breast cancer (TNBC) remains a challenge. Therefore it is crucial to determine the right treatment regime by understanding molecular mechanisms of driver regulators involved in the progression of TNBCs. This study aims to understand SETD1A mechanisms in TNBC development in two TNBC cell lines. SETD1A was transiently transfected in MDA-MB-468 (FEC good prognosis) and Hs578T (FEC poor prognosis). Regulation of potential targets miR205, EMT marker ZEB1 and LRG1 and proliferative marker Ki-67 were tested by RqPCR to elucidate SETD1A interactions. This study displayed significant recovery of miR205 with SETD1A depletion and reduction of ZEB1 in MDA-MB-468. However, ZEB1 remained unchanged in Hs578T indicating ZEB1 regulation may be outcompeted by other mechanisms associated with aggressive cell line characteristics and the expression of endogenous ZEB1 was relatively high in Hs578T. Elevation of LRG1 and declined Ki-67 were observed by SETD1A knocked down. Enhanced expression was observed by LRG1 in Hs578T and not in MDA-MB-468 suggesting LRG1 contributed to distinct poor FEC outcome in TNBCs. The underlying mechanism of SETD1A in miR205/ZEB1/Ki-67/LRG1 axis needs further evaluation. Whether abrogation of the pathway is indeed associated with transcriptional or post-transcriptional activation in TNBC cell lines models, clearly validation in clinical samples is warranted to achieve its prognostic and therapeutic values in TNBCs.


Assuntos
Glicoproteínas/genética , Histona-Lisina N-Metiltransferase/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Regulação para Baixo , Epigênese Genética , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transfecção
6.
ESMO Open ; 9(4): 102993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613910

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) subtyping by gene profiling has provided valuable clinical information. Here, we aimed to evaluate the relevance of TNBC subtyping using immunohistochemistry (IHC), which could be a more clinically practical approach, for prognostication and applications in patient management. METHODS: A total of 123 TNBC cases were classified using androgen receptor (AR), CD8, Forkhead box C1 protein (FOXC1), and doublecortin-like kinase 1 (DCLK1) into luminal androgen receptor (LAR), basal-like immunosuppressive (BLIS), mesenchymal-like (MES), and immunomodulatory (IM) subtypes. The IM cases were further divided into the IM-excluded and IM-inflamed categories by CD8 spatial distribution. Their clinicopathological and biomarker profiles and prognoses were evaluated. RESULTS: LAR (28.6%) and MES (11.2%) were the most and least frequent subtypes. The IHC-TNBC subtypes demonstrated distinct clinicopathological features and biomarker profiles, corresponding to the reported features in gene profiling studies. IM-inflamed subtype had the best outcome, while BLIS had a significantly poorer survival. Differential breast-specific marker expressions were found. Trichorhinophalangeal syndrome type 1 (TRPS1) was more sensitive for IM-inflamed and BLIS, GATA-binding protein 3 (GATA3) for IM-excluded and MES, and gross cystic disease fluid protein 15 (GCDFP15) for LAR subtypes. CONCLUSIONS: Our findings demonstrated the feasibility of IHC surrogates to stratify TNBC subtypes with distinct features and prognoses. The IM subtype can be refined by its CD8 spatial pattern. Breast-specific marker expression varied among the subtypes. Marker selection should be tailored accordingly.


Assuntos
Biomarcadores Tumorais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/classificação , Feminino , Pessoa de Meia-Idade , Prognóstico , Biomarcadores Tumorais/metabolismo , Adulto , Imuno-Histoquímica , Idoso
7.
Tumori ; 110(1): 44-48, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726962

RESUMO

BACKGROUND: Immunotherapy has revolutionized the approach to metastatic triple-negative breast cancers. Atezolizumab was approved for patients with metastatic triple-negative breast cancers whose tumors express PD-L1, determined by SP 142 assay. To assess the availability and practice of SP142 test we administered a survey to all the 15 pathology departments of the Lazio Region during a six-month period. METHODS: The survey comprised 12 questions regarding the availability of SP142 in the pathology departments, the percentage of positive tests, the difficulties of pathologists in cases close to cut-off value and the tested samples. RESULTS: The SP142 assay was available in only eight centers. In case of positive result, most centers (5/8, 62.5%) reported values of PD-L1 expression ranging from > 1 to ⩽ 5%, with values close to the cut-off point (⩾ 1% or < 1%) being the greatest challenge.Most of the centers (6/8, 75%) tested material from both their own and other hospitals. In most centers, the evaluations were performed either on primary tumors or metastasis, in particular lymph nodes (5/8, 62.5%), followed by lung (3/8, 37.5%) and liver (1/8, 12.5%) metastasis. CONCLUSION: Our results raise some important issues concerning the evaluation of PD-L1 in the "real-life" setting, providing strategies for its implementation.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Imuno-Histoquímica , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patologia , Itália
8.
Adv Sci (Weinh) ; 11(15): e2305546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342612

RESUMO

The heterogeneity of triple-negative breast cancers (TNBC) remains challenging for various treatments. Ferroptosis, a recently identified form of cell death resulting from the unrestrained peroxidation of phospholipids, represents a potential vulnerability in TNBC. In this study, a high intensity focused ultrasound (HIFU)-driven nanomotor is developed for effective therapy of TNBC through induction of ferroptosis. Through bioinformatics analysis of typical ferroptosis-associated genes in the FUSCCTNBC dataset, gambogic acid is identified as a promising ferroptosis drug and loaded it into the nanomotor. It is found that the rapid motion of nanomotors propelled by HIFU significantly enhanced tumor accumulation and penetration. More importantly, HIFU not only actuated nanomotors to trigger effective ferroptosis of TNBC cells, but also drove nanomotors to activate ferroptosis-mediated antitumor immunity in primary and metastatic TNBC models, resulting in effective tumor regression and prevention of metastases. Overall, HIFU-driven nanomotors show great potential for ferroptosis-immunotherapy of TNBC.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Imunoterapia , Morte Celular , Biologia Computacional
9.
J Biomol Struct Dyn ; 42(3): 1099-1109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021492

RESUMO

Triple negative breast cancers (TNBC) are clinically heterogeneous but mostly aggressive malignancies devoid of expression of the estrogen, progesterone, and HER2 (ERBB2 or NEU) receptors. It accounts for 15-20% of all cases. Altered epigenetic regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. The antitumor effect of DNMT1 has also been explored in TNBC that currently lacks targeted therapies. However, the actual treatment for TNBC is yet to be discovered. This study is attributed to the identification of novel drug targets against TNBC. A comprehensive docking and simulation analysis was performed to optimize promising new compounds by estimating their binding affinity to the target protein. Molecular dynamics simulation of 500 ns well complemented the binding affinity of the compound and revealed strong stability of predicted compounds at the docked site. Calculation of binding free energies using MMPBSA and MMGBSA validated the strong binding affinity between compound and binding pockets of DNMT1. In a nutshell, our study uncovered that Beta-Mangostin, Gancaonin Z, 5-hydroxysophoranone, Sophoraflavanone L, and Dorsmanin H showed maximum binding affinity with the active sites of DNMT1. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with TNBC, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias de Mama Triplo Negativas , Xantonas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Epigênese Genética , Detecção Precoce de Câncer , DNA , Simulação de Acoplamento Molecular
10.
J Diet Suppl ; 20(6): 926-938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36373265

RESUMO

Vitamin D is an important regulator of bone health. In addition, as a ligand for a nuclear receptor expressed in breast cancer cells, vitamin D exerts neoplasia modulating effects in breast cancer. However, despite extensive investigations, associations of vitamin D levels with breast cancer patient characteristics and disease sub-types are conflicting. A retrospective review of medical records of consecutive breast cancer patients treated and followed in a single cancer center was undertaken. All patients with 25-hydroxyvitamin D (25-OHD, the circulating form of vitamin D) measurements available within 3 months of their diagnosis and before the start of any systemic treatment were included. Characteristics of patients and tumors with sufficient levels of 25-OHD were compared with those of patients with 25-OHD insufficiency. Two hundred ninety-two patients were included in the study. Almost two-thirds of the patients were 25-OHD insufficient, defined as having 25-OHD levels below 75 nmol/L. Compared with the group of patients who were 25-OHD sufficient, patients with 25-OHD insufficiency were younger and more often obese. Tumors of patients with 25-OHD insufficiency were more often ductal, of higher grade, and ER negative. 25-OHD insufficiency is prevalent in breast cancer patients and even more prevalent in younger and obese patients. 25-OHD insufficiency is associated with cancers that have aggressive characteristics, including higher grade and ER negativity.


Assuntos
Neoplasias da Mama , Deficiência de Vitamina D , Humanos , Feminino , Deficiência de Vitamina D/complicações , Vitamina D , Vitaminas , Obesidade/complicações
11.
Theranostics ; 13(14): 4905-4918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771785

RESUMO

Background: The liver metastasis accompanied with the loss of liver function is one of the most common complications in patients with triple-negative breast cancers (TNBC). Lineage reprogramming, as a technique direct inducing the functional cell types from one lineage to another lineage without passing through an intermediate pluripotent stage, is promising in changing cell fates and overcoming the limitations of primary cells. However, most reprogramming techniques are derived from human fibroblasts, and whether cancer cells can be reversed into hepatocytes remains elusive. Methods: Herein, we simplify preparation of reprogramming reagents by expressing six transcriptional factors (HNF4A, FOXA2, FOXA3, ATF5, PROX1, and HNF1) from two lentiviral vectors, each expressing three factors. Then the virus was transduced into MDA-MB-231 cells to generated human induced hepatocyte-like cells (hiHeps) and single-cell sequencing was used to analyze the fate for the cells after reprogramming. Furthermore, we constructed a Liver-on-a-chip (LOC) model by bioprinting the Gelatin Methacryloyl hydrogel loaded with hepatocyte extracellular vesicles (GelMA-EV) bioink onto the microfluidic chip to assess the metastasis behavior of the reprogrammed TNBC cells under the 3D liver microenvironment in vitro. Results: The combination of the genes HNF4A, FOXA2, FOXA3, ATF5, PROX1 and HNF1A could reprogram MDA-MB-231 tumor cells into human-induced hepatocytes (hiHeps), limiting metastasis of these cells. Single-cell sequencing analysis showed that the oncogenes were significantly inhibited while the liver-specific genes were activated after lineage reprogramming. Finally, the constructed LOC model showed that the hepatic phenotypes of the reprogrammed cells could be observed, and the metastasis of embedded cancer cells could be inhibited under the liver microenvironment. Conclusion: Our findings demonstrate that reprogramming could be a promising method to produce hepatocytes and treat TNBC liver metastasis. And the LOC model could intimate the 3D liver microenvironment and assess the behavior of the reprogrammed TNBC cells.


Assuntos
Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Hepatócitos/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Impressão Tridimensional , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
12.
Int J Biol Macromol ; 250: 126211, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562466

RESUMO

Melatonin and fucoidan are naturally active compounds that have been reported to have therapeutic benefits for patients receiving cancer treatment. However, both compounds face significant challenges, including physical, chemical, and biological metabolisms in the gastrointestinal tract, which limit their ability to achieve therapeutic concentrations at the tumor site. Furthermore, the effectiveness of melatonin and fucoidan as adjuvants in vivo is influenced by the route of administration through the digestive system and their accumulation at the endpoint of the tumor. In this study, we developed an oral administration of nanoparticle, MNPs@C@F, that consisted of PLGA nanoparticles modified with chitosan, to promote intestinal microfold cell transcytosis for the delivery of melatonin and fucoidan into tumors. The experimental results indicated that melatonin and fucoidan in the tumors could regulate the tumor microenvironment by decreasing P-gp, Twist, HIF-1α, and anti-inflammatory immune cell expression, and increasing cytotoxic T cell populations following doxorubicin treatment. This resulted in an increase in chemo-drug sensitivity, inhibition of distant organ metastasis, and promotion of immunogenic cell death. This study demonstrates a favorable co-delivery system of melatonin and fucoidan to directly reduce drug resistance and metastasis in TNBC.

13.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188915, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196783

RESUMO

Despite the recent advances in cancer therapy, triple-negative breast cancers (TNBCs) are the most relapsing cancer sub-type. It is partly due to their propensity to develop resistance against the available therapies. An intricate network of regulatory molecules in cellular mechanisms leads to the development of resistance in tumors. Non-coding RNAs (ncRNAs) have gained widespread attention as critical regulators of cancer hallmarks. Existing research suggests that aberrant expression of ncRNAs modulates the oncogenic or tumor suppressive signaling. This can mitigate the responsiveness of efficacious anti-tumor interventions. This review presents a systematic overview of biogenesis and down streaming molecular mechanism of the subgroups of ncRNAs. Furthermore, it explains ncRNA-based strategies and challenges to target the chemo-, radio-, and immunoresistance in TNBCs from a clinical standpoint.


Assuntos
RNA não Traduzido , Neoplasias de Mama Triplo Negativas , Humanos , RNA não Traduzido/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Transdução de Sinais
14.
Biomed Pharmacother ; 164: 114911, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224753

RESUMO

Breast cancers (BCs) remain the leading cause of cancer-related deaths among women worldwide. Among the different types of BCs, treating the highly aggressive, invasive, and metastatic triple-negative BCs (TNBCs) that do not respond to hormonal/human epidermal growth factor receptor 2 (HER2) targeted interventions since they lack ER/PR/HER2 receptors remains challenging. While almost all BCs depend on glucose metabolism for their proliferation and survival, studies indicate that TNBCs are highly dependent on glucose metabolism compared to non-TNBC malignancies. Hence, limiting/inhibiting glucose metabolism in TNBCs should curb cell proliferation and tumor growth. Previous reports, including ours, have shown the efficacy of metformin, the most widely prescribed antidiabetic drug, in reducing cell proliferation and growth in MDA-MB-231 and MDA-MB-468 TNBC cells. In the current study, we investigated and compared the anticancer effects of either metformin (2 mM) in glucose-starved or 2-deoxyglucose (10 mM; glycolytic inhibitor; 2DG) exposed MDA-MB-231 and MDA-MB-468 TNBC cells. Assays for cell proliferation, rate of glycolysis, cell viability, and cell-cycle analysis were performed. The status of proteins of the mTOR pathway was assessed by Western blot analysis. Metformin treatment in glucose-starved and 2DG (10 mM) exposed TNBC cells inhibited the mTOR pathway compared to non-treated glucose-starved cells or 2DG/metformin alone treated controls. Cell proliferation is also significantly reduced under these combination treatment conditions. The results indicate that combining a glycolytic inhibitor and metformin could prove an efficient therapeutic approach for treating TNBCs, albeit the efficacy of the combination treatment may depend on metabolic heterogeneity across various subtypes of TNBCs.


Assuntos
Metformina , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Desoxiglucose/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Serina-Treonina Quinases TOR , Glucose/metabolismo
15.
Cancers (Basel) ; 14(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35884417

RESUMO

Strategies are being explored to increase the efficiency of immune checkpoint inhibitors (ICIs) targeting PD1/PDL1 in triple-negative breast cancer (TNBC), including combination with therapies inhibiting intracellular immune checkpoints such as CISH (Cytokine-induced SH2 protein). Correlation between CISH expression and TNBC features is unknown. We retrospectively analyzed CISH expression in 1936 clinical TNBC samples and searched for correlations with clinical variables, including metastasis-free interval (MFI). Among TNBCs, 44% were identified as "CISH-up" and 56% "CISH-down". High expression was associated with pathological axillary lymph node involvement, more adjuvant chemotherapy, and Lehmann's immunomodulatory and luminal AR subtypes. The "CISH-up" class showed longer 5-year MFI (72%) than the "CISH-down" class (60%; p = 2.8 × 10-2). CISH upregulation was associated with activation of IFNα and IFNγ pathways, antitumor cytotoxic immune response, and signatures predictive for ICI response. When CISH and PDL1 were upregulated together, the 5-year MFI was 81% versus 52% when not upregulated (p = 6.21 × 10-6). The two-gene model provided more prognostic information than each gene alone and maintained its prognostic value in multivariate analysis. CISH expression is associated with longer MFI in TNBC and refines the prognostic value of PDL1 expression. Such observation might reinforce the therapeutic relevance of combining CISH inhibition with an anti-PD1/PDL1 ICI.

16.
Cancers (Basel) ; 14(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139665

RESUMO

During the anti-tumour response to breast cancer, the primary tumour, the peripheral blood, and the lymph nodes each play unique roles. Immunological features at each site reveal evidence of continuous immune cross-talk between them before, during and after treatment. As such, immune responses to breast cancer are found to be highly dynamic and truly systemic, integrating three distinct immune sites, complex cell-migration highways, as well as the temporal dimension of disease progression and treatment. In this review, we provide a connective summary of the dynamic immune environment triad of breast cancer. It is critical that future studies seek to establish dynamic immune profiles, constituting multiple sites, that capture the systemic immune response to breast cancer and define patient-selection parameters resulting in more significant overall responses and survival rates for breast cancer patients.

17.
Pharmaceutics ; 14(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057042

RESUMO

Triple-negative breast cancers (TNBCs) are heterogeneous and metastatic, and targeted therapy is highly needed for TNBC treatment. Recent studies showed that extracellular vesicles (EV) have great potential to deliver therapies to treat cancers. This study aimed to develop and evaluate a natural compound, verrucarin A (Ver-A), delivered by targeted EV, to treat TNBC. First, the surface expression of epidermal growth factor receptor (EGFR) and CD47 were confirmed with immunohistochemistry (IHC) staining of patient tissue microarray, flow cytometry and Western blotting. EVs were isolated from HEK 293F culture and surface tagged with anti-EGFR/CD47 mAbs to construct mAb-EV. The flow cytometry, confocal imaging and live-animal In Vivo Imaging System (IVIS) demonstrated that mAb-EV could effectively target TNBC and deliver the drug. The drug Ver-A, with dosage-dependent high cytotoxicity to TNBC cells, was packed in mAb-EV. The anti-TNBC efficacy study showed that Ver-A blocked tumor growth in both 4T1 xenografted immunocompetent mouse models and TNBC patient-derived xenograft models with minimal side effects. This study demonstrated that the targeted mAb-EV-Ver-A had great potential to treat TNBCs.

18.
Gland Surg ; 11(10): 1673-1682, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36353580

RESUMO

Background: Breast cancers characterized by triple-negative status tend to be more malignant and have a poorer prognosis. A risk model for predicting breast cancer risk should be developed. Methods: We obtained gene expression and clinical characteristics data using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) database. Differential gene screening between patients with triple-negative breast cancer (TNBC) and non-triple-negative breast cancers (NTNBC) was performed according to the "edgeR" filter criteria. Univariate and multivariate Cox regression analyses were used to construct a risk model and identify prognosis-related genes. XCELL, TIMER, EPIC, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT software programs were used to determine the extent of tumor immune cell infiltration. To evaluate the clinical responses to breast cancer treatment, the half maximal inhibitory concentration (IC50s) of common chemotherapeutics were calculated using "pRRophetic" and "ggplot2". Cell proliferation was assayed using cell counting kit-8 (CCK8) and 5-Ethynyl-2'-deoxyuridine (EdU) Cell Proliferation Kit. A dual-luciferase reporter assay confirmed the gene regulatory relationship of sex determining region Y-box 10 (SOX10). Results: An assessment model was established for Keratin23 (KRT23) and non-specific cytotoxic cell receptor 1 (NCCRP1) using the univariate and multivariate Cox regression analyses. In addition, high expression levels of KRT23 and NCCRP1 indicated high proliferation and poor prognosis. We also found that the gene expression patterns of multiple genes were significantly more predictive of risks and have a higher level of consistency when assessing risk. In vitro experiments showed that the expressions of KRT23 and NCCRP1 were increased in TNBCs and promoted cell proliferation. Mechanically, the dual-luciferase reporter assay confirmed that SOX10 regulated the expressions of KRT23 and NCCRP1. The risk score model revealed a close relationship between the expressions of KRT23 and NCCRP1, the tumor immune microenvironment, and chemotherapeutics. Conclusions: In conclusion, we constructed a risk assessment model to predict the risk of TNBC patients, which acted as a potential predictor for chemosensitivity.

19.
Pathol Res Pract ; 238: 154137, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152566

RESUMO

OBJECTIVE: To compare the expression of programmed cell death ligand 1 (PD-L1) in different paraffin blocks from the same triple-negative breast cancers (TNBC) specimen and between matched primary tumors and lymph node metastases (LNMets). We also aim to determine the interobserver agreement between pathologists trained on PD-L1 (SP142) assay in assessing TNBC. METHODS: 426 histologically confirmed TNBC cases, in which 85 have LNMets, were included in this study. A PD-L1 (SP142) assay was used to identify PD-L1 expression on tumor infiltrating immune cells (IC) and also on tumor cells (TC) in primary tumors and LNMets of TNBC by two trained pathologists. PD-L1 scoring and assessment were based on criteria in IMpassion 130 trial criteria. Concordance of PD-L1 expression in TNBC were analyzed using Kappa-test and assessed by the Kappa value. RESULTS: Prevalence of positive PD-L1 expression (PD-L1 +) on tumor-infiltrating immune cells (PD-L1 IC+) (IC≥1%) in LNMets (49.4%) was higher than in the matched primary tumors (38.9%). Concordance of PD-L1 expression on IC between the two paraffin blocks from the same primary tumor specimen was substantial (P < 0.000, Kappa = 0.627) and was identified in 83.1% (108/130) of the selected cases. For TNBC cases with matched primary and LNMets blocks, the concordance of PD-L1IC scoring between the two blocks was moderate (P < 0.000, Kappa = 0.434). Interobserver agreement of PD-L1 assessment was 78.2% (P < 0.000, Kappa = 0.567) in primary tumors and 61.4% (P < 0.000, Kappa = 0.253) in the matched LNets. CONCLUSION: Substantial intratumor concordance of PD-L1 scoring of the primary tumors in TNBC patients was determined, implying that immunohistochemically detection using one representative block of the primary tumor should be enough to assign the expression status of PD-L1 in clinical practice. The prevalence of PD-L1 + in lymph node metastases (LNMets) was higher than in the matched primary tumors, implying that PD-L1 detection in LNMets may provide additional PD-L1 expression information, especially in TNBC cases with PD-L1- in the matched primary breast tumors. Interobserver agreement of PD-L1 scoring in primary tumors was moderate while only fair in LNMets, implying that the additional training for PD-L1 assessment of TNBC LNMets specimens is recommended to enhance interobserver agreement. DATA AVAILABILITY: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

20.
Pharmaceutics ; 14(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456673

RESUMO

Cisplatin is one of the most common therapeutics used in treatments of several types of cancers. To enhance cisplatin lipophilicity and reduce resistance and side effects, a polyfluorinated bipyridine-modified cisplatin analogue, dichloro[4,4'-bis(2,2,3,3-tetrafluoropropoxy)methyl)-2,2'-bipryridine] platinum (TFBPC), was synthesized and therapeutic assessments were performed. TFBPC displayed superior effects in inhibiting the proliferation of several cisplatin-resistant human cancer cell lines, including MDA-MB-231 breast cancers, COLO205 colon cancers and SK-OV-3 ovarian cancers. TFBPC bound to DNA and formed DNA crosslinks that resulted in DNA degradation, triggering the cell death program through the PARP/Bax/Bcl-2 apoptosis and LC3-related autophagy pathway. Moreover, TFBPC significantly inhibited tumor growth in both animal models which include a cell line-derived xenograft model (CDX) of cisplatin-resistant MDA-MB-231, and a patient-derived xenograft (PDX) model of triple-negative breast cancers (TNBCs). Furthermore, the biopsy specimen from TFBPC-treated xenografts revealed decreased expressions of P53, Ki-67 and PD-L1 coupled with higher expression of cleaved caspase 3, suggesting TFBPC treatment was effective and resulted in good prognostic indications. No significant pathological changes were observed in hematological and biochemistry tests in blood and histological examinations from the specimen of major organs. Therefore, TFBPC is a potential candidate for treatments of patients suffering from TNBCs as well as other cisplatin-resistant cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA