Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 534-544.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33373586

RESUMO

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its ß-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Túbulos Renais Proximais/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Polimorfismo Genético , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Domínios Proteicos , Sistema Renina-Angiotensina
2.
Artigo em Inglês | MEDLINE | ID: mdl-39250817

RESUMO

The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, co-immunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology.

3.
Kidney Int ; 105(1): 99-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054920

RESUMO

Acute kidney injury (AKI) affects over 13 million people worldwide annually and is associated with a 4-fold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces cell death and worsens AKI. The factors that trigger DDR to switch from pro-repair to pro-cell death remain to be resolved. Here we investigated the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identified PTCs as a novel source of urinary IL-22. Functionally, IL-22 binding IL-22RA1 on PTCs amplified the DDR. Treating primary PTCs with IL-22 alone induced rapid activation of the DDR. The combination of IL-22 and either cisplatin- or AA-induced cell death in primary PTCs, while the same dose of cisplatin or AA alone did not. Global deletion of IL-22 protected against cisplatin- or AA-induced AKI, reduced expression of DDR components, and inhibited PTC cell death. To confirm PTC IL-22 signaling contributed to AKI, we knocked out IL-22RA1 specifically in kidney tubule cells. IL-22RA1ΔTub mice displayed reduced DDR activation, cell death, and kidney injury compared to controls. Thus, targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with repair of damaged DNA.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Interleucina 22 , Túbulos Renais Proximais , Injúria Renal Aguda/prevenção & controle , Morte Celular , Dano ao DNA , Reparo do DNA
4.
Nephrol Dial Transplant ; 38(3): 599-609, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35945682

RESUMO

BACKGROUND: Common genetic variants of the enzymes and efflux pump involved in tacrolimus disposition have been associated with calcineurin inhibitor nephrotoxicity, but their importance is unclear because of the multifactorial background of renal fibrosis. This study explores the pro-fibrotic response of tacrolimus exposure in relation to the differential capacity for tacrolimus metabolism in proximal tubule cells (PTCs) with a variable (pharmaco)genetic background. METHODS: PTCs were obtained from protocol allograft biopsies with different combinations of CYP3A5 and ABCB1 variants and were incubated with tacrolimus within the concentration range found in vivo. Gene and protein expression, CYP3A5 and P-glycoprotein function, and tacrolimus metabolites were measured in PTC. Connective tissue growth factor (CTGF) expression was assessed in protocol biopsies of kidney allograft recipients. RESULTS: PTCs produce CTGF in response to escalating tacrolimus exposure, which is approximately 2-fold higher in cells with the CYP3A5*1 and ABCB1 TT combination in vitro. Increasing tacrolimus exposure results in relative higher generation of the main tacrolimus metabolite {13-O-desmethyl tacrolimus [M1]} in cells with this same genetic background. Protocol biopsies show a larger increase in in vivo CTGF tissue expression over time in TT vs. CC/CT but was not affected by the CYP3A5 genotype. CONCLUSIONS: Tacrolimus exposure induces a pro-fibrotic response in a PTC model in function of the donor pharmacogenetic background associated with tacrolimus metabolism. This finding provides a mechanistic insight into the nephrotoxicity associated with tacrolimus treatment and offers opportunities for a tailored immunosuppressive treatment.


Assuntos
Nefropatias , Transplante de Rim , Humanos , Tacrolimo , Citocromo P-450 CYP3A/genética , Imunossupressores/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
5.
Cryobiology ; 111: 113-120, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164251

RESUMO

By preventing freezing, antifreeze proteins (AFPs) can permit cells and organs to be stored at subzero temperatures. As metabolic rates decrease with decreasing temperature, subzero static cold storage (SZ-SCS) could provide more time for tissue matching and potentially lead to fewer discarded organs. Human kidneys are generally stored for under 24 h and the tubule epithelium is known to be particularly sensitive to static cold storage (SCS). Here, telomerase-immortalized proximal-tubule epithelial cells from humans, which closely resemble their progenitors, were used as a proxy to assess the potential benefit of SZ-SCS for kidneys. The effects of hyperactive AFPs from a beetle and Cryostasis Storage Solution were compared to University of Wisconsin Solution at standard SCS temperatures (4 °C) and at -6 °C for up to six days. Although the AFPs helped guard against freezing, lower storage temperatures under these conditions were not beneficial. Compared to cells at 4 °C, those stored at -6 °C showed decreased viability as well as increased lactate dehydrogenase release and apoptosis. This suggests that this kidney cell type might be prone to chilling injury and that the addition of AFPs to enable SZ-SCS may not be effective for increasing storage times.


Assuntos
Criopreservação , Soluções para Preservação de Órgãos , Humanos , Criopreservação/métodos , Proteínas Anticongelantes/metabolismo , Túbulos Renais/metabolismo
6.
J Am Soc Nephrol ; 33(3): 487-501, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031569

RESUMO

AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.


Assuntos
Injúria Renal Aguda , Células-Tronco Pluripotentes , Injúria Renal Aguda/metabolismo , Animais , Feminino , Humanos , Rim/metabolismo , Masculino , Mamíferos , Néfrons/metabolismo , Organoides/metabolismo
7.
Drug Chem Toxicol ; 46(6): 1130-1137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36254786

RESUMO

Titatinum dioxide nanoparticles (TiO2-NPs) are frequently used in several areas. Titanium alloys are employed in orthopedic and odontological surgery (such as hip, knee, and teeth implants). To evaluate the potential acute toxic effects of titanium pieces implantations and in other sources that allow the systemic delivery of titanium, parenteral routes of TiO2-NPs administration should be taken into account. The present study evaluated the impact of subcutaneous administration of TiO2-NPs on renal function and structure in rats. Animals were exposed to a dose of 50 mg/kg b.w., s.c. and sacrificed after 48 h. Titanium levels were detected in urine (135 ± 6 ηg/mL) and in renal tissue (502 ± 40 ηg/g) employing inductively coupled plasma mass spectrometry. An increase in alkaline phosphatase activity, total protein levels, and glucose concentrations was observed in urine from treated rats suggesting injury in proximal tubule cells. In parallel, histopathological studies showed tubular dilatation and cellular desquamation in these nephron segments. In summary, this study demonstrates that subcutaneous administration of TiO2-NPs causes acute nephrotoxicity evidenced by functional and histological alterations in proximal tubule cells. This fact deserves to be mainly considered when humans are exposed directly or indirectly to TiO2-NPs sources that cause the systemic delivery of titanium.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Ratos , Animais , Titânio/toxicidade , Titânio/química , Nanopartículas/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
8.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958530

RESUMO

The high prevalence of kidney diseases and the low identification rate of drug nephrotoxicity in preclinical studies reinforce the need for representative yet feasible renal models. Although in vitro cell-based models utilizing renal proximal tubules are widely used for kidney research, many proximal tubule cell (PTC) lines have been indicated to be less sensitive to nephrotoxins, mainly due to altered expression of transporters under a two-dimensional culture (2D) environment. Here, we selected HK-2 cells to establish a simplified three-dimensional (3D) model using gelatin sponges as scaffolds. In addition to cell viability and morphology, we conducted a comprehensive transcriptome comparison and correlation analysis of 2D and 3D cultured HK-2 cells to native human PTCs. Our 3D model displayed stable and long-term growth with a tubule-like morphology and demonstrated a more comparable gene expression profile to native human PTCs compared to the 2D model. Many missing or low expressions of major genes involved in PTC transport and metabolic processes were restored, which is crucial for successful nephrotoxicity prediction. Consequently, we established a cost-effective yet more representative model for in vivo PTC studies and presented a comprehensive transcriptome analysis for the systematic characterization of PTC lines.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gelatina , Humanos , Gelatina/farmacologia , Transcriptoma , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Linhagem Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas
9.
Int J Med Sci ; 19(5): 916-923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693742

RESUMO

Diabetic nephropathy (DKD) is the most common chronic microvascular complication of diabetes. About 20%-40% of diabetics develop DKD, which eventually leads to chronic kidney failure. Although progress has been made in diagnosis and treatment tools, diabetic nephropathy is still a major clinical problem. In recent years, circular RNA (CircRNA) has become a research hotspot. CircRNA is a non-coding RNA formed by covalently closing the 5 'and 3' ends of the precursor RNA. CircRNA has powerful biological functions. CircRNA can regulate the expression of target genes through competitive binding with microRNA, thus playing the biological role of endogenous RNA (CeRNA). Many studies have shown that circRNAs plays an important role in malignant tumors, autoimmune system diseases, coronary heart disease and other diseases. More and more studies have shown that it can also be used as a biomarker of diabetes and diabetic nephropathy. This review summarizes the origin, classification, biogenesis and regulatory mechanisms of circRNAs. In addition, the pathogenesis and clinical significance of circRNAs as competing endogenous RNAs involved in diabetic nephropathy were also introduced. This will help us fully understand the pathological mechanism of diabetic nephropathy and develop new therapeutic targets or treatment options to improve the prognosis of patients with diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Biomarcadores , Nefropatias Diabéticas/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , RNA/genética , RNA/metabolismo , RNA Circular/genética
10.
FASEB J ; 34(6): 7941-7957, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293069

RESUMO

Acute renal depletion of sorting nexin 1 (SNX1) in mice results in blunted natriuretic response and hypertension due to impaired dopamine D5 receptor (D5 R) activity. We elucidated the molecular mechanisms for these phenotypes in Snx1-/- mice. These mice had increased renal expressions of angiotensin II type 1 receptor (AT1 R), NADPH oxidase (NOX) subunits, D5 R, and NaCl cotransporter. Basal reactive oxygen species (ROS), NOX activity, and blood pressure (BP) were also higher in Snx1-/- mice, which were normalized by apocynin, a drug that prevents NOX assembly. Renal proximal tubule (RPT) cells from hypertensive (HT) Euro-American males had deficient SNX1 activity, impaired D5 R endocytosis, and increased ROS compared with cells from normotensive (NT) Euro-American males. siRNA-mediated depletion of SNX1 in RPT cells from NT subjects led to a blunting of D5 R agonist-induced increase in cAMP production and decrease in Na+ transport, effects that were normalized by over-expression of SNX1. Among HT African-Americans, three of the 12 single nucleotide polymorphisms interrogated for the SNX1 gene were associated with a decrease in systolic BP in response to hydrochlorothiazide (HCTZ). The results illustrate a new paradigm for the development of hypertension and imply that the trafficking protein SNX1 may be a crucial determinant for hypertension and response to antihypertensive therapy.


Assuntos
Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Nexinas de Classificação/metabolismo , Animais , Pressão Sanguínea/fisiologia , Linhagem Celular , Feminino , Humanos , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , NADPH Oxidases/metabolismo , Oxirredução , Transporte Proteico/fisiologia , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
11.
Amino Acids ; 53(8): 1229-1240, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34254213

RESUMO

Mitochondrial dysfunction in proximal tubular epithelial cells is a key event in acute kidney injury (AKI), which is a risk factor for the development of chronic kidney disease (CKD). Apelin is a bioactive peptide that protects against AKI by alleviating inflammation, inhibiting apoptosis, and preventing lipid oxidation, but its role in protecting against mitochondrial damage remains unknown. Herein, we examined the protective effects of apelin on mitochondria in cisplatin-stimulated human renal proximal tubular epithelial cells and evaluated its therapeutic efficacy in cisplatin-induced AKI mice. In vitro, apelin inhibited the cisplatin-induced mitochondrial fission factor (MFF) upregulation and the fusion-promoting protein optic atrophy 1 (OPA1) downregulation. Apelin co-treatment reversed the decreased levels of the deacetylase, Sirt3, and the increased levels of protein acetylation in mitochondria of cisplatin-stimulated cells. Overall, apelin improved the mitochondrial morphology and membrane potential in vitro. In the AKI model, apelin administration significantly attenuated mitochondrial damage, as evidenced by longer mitochondrial profiles and increased ATP levels in the renal cortex. Suppression of MFF expression, and maintenance of Sirt3 and OPA1 expression in apelin-treated AKI mice was also observed. Finally, exogenous administration of apelin normalized the serum level of creatinine and urea nitrogen and the urine levels of NGAL and Kim-1. We also confirmed a regulatory pathway that drives mitochondrial homeostasis including PGC-1α, ERRα and Sirt3. In conclusion, we demonstrated that apelin ameliorates renal functions by protecting tubular mitochondria through Sirt3 upregulation, which is a novel protective mechanism of apelin in AKI. These results suggest that apelin has potential renoprotective effects and may be an effective agent for AKI treatment to significantly retard CKD progression.


Assuntos
Injúria Renal Aguda/metabolismo , Apelina/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias/metabolismo , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/toxicidade , Células Cultivadas , Cisplatino/toxicidade , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 3/metabolismo
12.
Xenobiotica ; 51(6): 657-667, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33870862

RESUMO

Effects of cholecalciferol (VitD3) and calcitriol (1,25-VitD3), on the expression and function of major vitamin D metabolizing enzymes (cytochrome P450 [CYP]2R1, CYP24A1) and select drug transport pathways (ABCB1/P-gp, SLCO4C1/OATP4C1) were evaluated in human kidney proximal tubule epithelial cells (hPTECs) under normal and uraemic serum conditions.hPTECs were incubated with 10% normal or uraemic serum for 24 h followed by treatment with 2% ethanol vehicle, or 100 and 240 nM doses of VitD3, or 1,25-VitD3 for 6 days. The effects of treatment on mRNA and protein expression and functional activity of select CYP enzymes and transporters were assessedUnder uraemic serum, treatment with 1,25-VitD3 resulted in increased mRNA but decreased protein expression of CYP2R1. Activity of CYP2R1 was not influenced by serum or VitD analogues. CYP24A1 expression was increased with 1,25-VitD3 under normal as well as uraemic serum, although to a lesser extent. ABCB1/P-gp mRNA expression increased under normal and uraemic serum, with exposure to 1,25-VitD3. SLCO4C1/OATP4C1 exhibited increased mRNA but decreased protein expression, under uraemic serum + 1,25-VitD3. Functional assessments of transport showed no changes regardless of exposure to serum or 1,25-VitD3.Key findings indicate that uraemic serum and VitD treatment led to differential effects on the functional expression of CYPs and transporters in hPTECs.


Assuntos
Transportadores de Ânions Orgânicos , Preparações Farmacêuticas , Uremia , Colecalciferol , Humanos , Rim , Vitamina D
13.
Ultrastruct Pathol ; 45(3): 212-223, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34304707

RESUMO

Tumor growth causes significant metabolic disturbances, tissue damage and the accumulation of toxic metabolites in the blood. The kidney is an organ with highly developed capillary network and therefore can be exposed to toxic metabolites. Here, the proximal renal tubule cells were studied by immunohistochemistry and electron microscopy, on a model of hepatocellular carcinoma-29 growth in the thigh of CBA mice and lithium carbonate treatment. An increase of autophagy markers (LC3 and LAMP-1) expression was revealed under conditions of distant tumor growth and especially after lithium carbonate treatment. Under conditions of distant tumor we found decrease of numerical density of endosomes and dense apical tubules in the apical part of the cells. In the perinuclear cell compartment, there were swelling of mitochondria and a decrease in their cristae, a decrease of volume density of rough endoplasmic reticulum and the presence of autophagosomes and autolysosomes. The use of lithium carbonate led to an increase of autophagic structures volume density and of dense apical tubules numerical density in the proximal tubule cells. It is possible that the activation of autophagy by lithium can promote an increase in protein recycling in the proximal tubule cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Rim , Túbulos Renais Proximais , Lítio , Camundongos , Camundongos Endogâmicos CBA
14.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669091

RESUMO

Oxidative stress and inflammation play important roles in the pathophysiology of acute kidney injury (AKI). Transient receptor potential ankyrin 1 (TRPA1) is a Ca2+-permeable ion channel that is sensitive to reactive oxygen species (ROS). The role of TRPA1 in AKI remains unclear. In this study, we used human and animal studies to assess the role of renal TRPA1 in AKI and to explore the regulatory mechanism of renal TRPA1 in inflammation via in vitro experiments. TRPA1 expression increased in the renal tubular epithelia of patients with AKI. The severity of tubular injury correlated well with tubular TRPA1 or 8-hydroxy-2'-deoxyguanosine expression. In an animal model, renal ischemia-reperfusion injury (IR) increased tubular TRPA1 expression in wild-type (WT) mice. Trpa1-/- mice displayed less IR-induced tubular injury, oxidative stress, inflammation, and dysfunction in kidneys compared with WT mice. In the in vitro model, TRPA1 expression increased in renal tubular cells under hypoxia-reoxygenation injury (H/R) conditions. We demonstrated that H/R evoked a ROS-dependent TRPA1 activation, which elevated intracellular Ca2+ level, increased NADPH oxidase activity, activated MAPK/NF-κB signaling, and increased IL-8. Renal tubular TRPA1 may serve as an oxidative stress sensor and a crucial regulator in the activation of signaling pathways and promote the subsequent transcriptional regulation of IL-8. These actions might be evident in mice with IR or patients with AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Desoxiguanosina/metabolismo , Túbulos Renais/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/genética , Traumatismo por Reperfusão/metabolismo , Canal de Cátion TRPA1/metabolismo , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Adulto , Animais , Cálcio/metabolismo , Linhagem Celular , Desoxiguanosina/análogos & derivados , Modelos Animais de Doenças , Epitélio/metabolismo , Epitélio/patologia , Humanos , Imuno-Histoquímica , Interleucina-8/metabolismo , Túbulos Renais/citologia , Túbulos Renais/enzimologia , Túbulos Renais/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Cátion TRPA1/genética
15.
J Cell Physiol ; 235(12): 9958-9973, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32474911

RESUMO

Nephron loss stimulates residual functioning nephrons to undergo compensatory growth. Excessive nephron growth may be a maladaptive response that sets the stage for progressive nephron damage, leading to kidney failure. To date, however, the mechanism of nephron growth remains incompletely understood. Our previous study revealed that class III phosphatidylinositol-3-kinase (Pik3c3) is activated in the remaining kidney after unilateral nephrectomy (UNX)-induced nephron loss, but previous studies failed to generate a Pik3c3 gene knockout animal model. Global Pik3c3 deletion results in embryonic lethality. Given that renal proximal tubule cells make up the bulk of the kidney and undergo the most prominent hypertrophic growth after UNX, in this study we used Cre-loxP-based approaches to demonstrate for the first time that tamoxifen-inducible SLC34a1 promoter-driven CreERT2 recombinase-mediated downregulation of Pik3c3 expression in renal proximal tubule cells alone is sufficient to inhibit UNX- or amino acid-induced hypertrophic nephron growth. Furthermore, our mechanistic studies unveiled that the SLC34a1-CreERT2 recombinase-mediated Pik3c3 downregulation inhibited UNX- or amino acid-stimulated lysosomal localization and signaling activation of mechanistic target of rapamycin complex 1 (mTORC1) in the renal proximal tubules. Moreover, our additional cell culture experiments using RNAi confirmed that knocking down Pik3c3 expression inhibited amino acid-stimulated mTORC1 signaling and blunted cellular growth in primary cultures of renal proximal tubule cells. Together, both our in vivo and in vitro experimental results indicate that Pik3c3 is a major mechanistic mediator responsible for sensing amino acid availability and initiating hypertrophic growth of renal proximal tubule cells by activation of the mTORC1-S6K1-rpS6 signaling pathway.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/genética , Túbulos Renais Proximais/crescimento & desenvolvimento , Rim/efeitos dos fármacos , Néfrons/crescimento & desenvolvimento , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Animais , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Integrases/genética , Rim/crescimento & desenvolvimento , Rim/patologia , Rim/cirurgia , Túbulos Renais Proximais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Nefrectomia , Néfrons/metabolismo , Fosforilação/genética , Proteína-Lisina 6-Oxidase/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
16.
Amino Acids ; 52(6-7): 975-985, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32642843

RESUMO

Elevated plasma concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) and low plasma concentrations of L-homoarginine are independently associated with cardiovascular events and mortality. Key enzymes involved in the homeostasis of both arginine derivatives are expressed in proximal tubule cells of the kidney. To get access to these enzymes, transport proteins are important. One of the transporters mediating the transport of ADMA and L-homoarginine is the solute carrier superfamily (SLC) member OATP4C1, located in the basolateral membrane of proximal tubule cells. To gain insights into the role of export pumps in the transport of both substances, we established a double-transfected MDCK cell line expressing OATP4C1 and the export pump P-glycoprotein (P-gp). Using MDCK cell monolayers, we demonstrated in time-dependent and concentration-dependent vectorial transport experiments that ADMA and L-homoarginine are transported from the basolateral to the apical compartment of MDCK-OATP4C1-P-gp cells with significantly higher transport rates compared to single-transfected MDCK-OATP4C1, MDCK-P-gp and MDCK-VC (control) cells (e.g. transport ratio MDCK-OATP4C1-P-gp/MDCK-VC: for 50 µM ADMA = 2.0-fold, for 50 µM L-homoarginine = 3.4-fold). These results indicate that both OATP4C1 and P-gp transport the arginine derivatives ADMA and L-homoarginine and are, therefore, important for the homoeostasis of both substances.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Arginina/análogos & derivados , Homoarginina/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Arginina/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Transportadores de Ânions Orgânicos/genética , Transcitose , Transfecção
17.
Exp Cell Res ; 378(1): 51-56, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836064

RESUMO

Diabetic kidney disease (DKD) is associated with altered metabolic patterns, leading to increased lactate production even in the presence of sufficient oxygen supply. Studies have shown hyperglycemia to be an important factor in determining development of DKD. Here we explore the metabolic consequences of lactate dehydrogenase (LDH) inhibition exerted by the LDH inhibitor, oxamate, in the isolated rat renal proximal tubular cells (NRK-52E) under hyperglycemic conditions. Cells treated with oxamate (100 mM) for 24 h, with or without high D-glucose (25 mM) load, were investigated with hyperpolarized [1-13C]pyruvate in a 1T NMR system. Respiratory measurements using an oxygen microsensor system was conducted. Oxamate treatment of cells with or without the presences of high D-glucose, reduced the lactate production/accumulation with 36.5% or 22.5% respectively. Reduced proliferation, hypertrophic effects, as well as elevated vascular endothelial growth factor (VEGF) expression in the NRK-52E cells were found. The increased glycolytic flux in high D-glucose cultured NRK-52E cells resulted in an upregulation of the cellular oxygen consumption rate upon treatment with oxamate. Our findings suggested that in vitro cultured NRK-52E cells exposed to hyperglycemic conditions, could redirect the glycolytic flux towards oxidative phosphorylation by LDH inhibition. This link between aerobic and anaerobic metabolism may be determined by the redox balance (NAD+/NADH ratio). In conclusion, hyperglycemic conditions and oxamate treatment alters the metabolic phenotype of NRK-52E cells towards increased oxygen utilization mediated by a decreased NAD+/NADH ratio, which in turn decreases cell proliferation/survival.


Assuntos
Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Hiperglicemia/metabolismo , Túbulos Renais Proximais/citologia , L-Lactato Desidrogenase/metabolismo , Ácido Oxâmico/farmacologia , Animais , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Glucose/metabolismo , Glicólise , L-Lactato Desidrogenase/antagonistas & inibidores , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Am Soc Nephrol ; 30(4): 564-576, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30867249

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) are fundamental regulators of cellular biology that affect all steps in the generation and processing of RNA molecules. Recent evidence suggests that regulation of RBPs that modulate both RNA stability and translation may have a profound effect on the proteome. However, regulation of RBPs in clinically relevant experimental conditions has not been studied systematically. METHODS: We used RNA interactome capture, a method for the global identification of RBPs to characterize the global RNA-binding proteome (RBPome) associated with polyA-tailed RNA species in murine ciliated epithelial cells of the inner medullary collecting duct. To study regulation of RBPs in a clinically relevant condition, we analyzed hypoxia-associated changes of the RBPome. RESULTS: We identified >1000 RBPs that had been previously found using other systems. In addition, we found a number of novel RBPs not identified by previous screens using mouse or human cells, suggesting that these proteins may be specific RBPs in differentiated kidney epithelial cells. We also found quantitative differences in RBP-binding to mRNA that were associated with hypoxia versus normoxia. CONCLUSIONS: These findings demonstrate the regulation of RBPs through environmental stimuli and provide insight into the biology of hypoxia-response signaling in epithelial cells in the kidney. A repository of the RBPome and proteome in kidney tubular epithelial cells, derived from our findings, is freely accessible online, and may contribute to a better understanding of the role of RNA-protein interactions in kidney tubular epithelial cells, including the response of these cells to hypoxia.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Hipóxia Celular/fisiologia , Cílios/metabolismo , Células HEK293 , Humanos , Camundongos , Ligação Proteica
19.
J Am Soc Nephrol ; 30(3): 421-441, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30760496

RESUMO

BACKGROUND: Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS: We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS: We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS: We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.

20.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380787

RESUMO

Coronaviruses (CoVs), including Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and the novel coronavirus disease-2 (SARS-CoV-2) are a group of enveloped RNA viruses that cause a severe respiratory infection which is associated with a high mortality [...].


Assuntos
Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/virologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/virologia , Pneumonia Viral/virologia , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/prevenção & controle , Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2 , COVID-19 , Catepsinas/metabolismo , Morte Celular/efeitos dos fármacos , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Creatinina/sangue , Estado Terminal/mortalidade , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Incidência , Túbulos Renais Proximais/fisiopatologia , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Lisossomos/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Receptores Virais/metabolismo , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/sangue , Síndrome Respiratória Aguda Grave/mortalidade , Síndrome Respiratória Aguda Grave/fisiopatologia , Internalização do Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA