Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; 20(33): e2311799, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38545998

RESUMO

Single atom catalysts (SACs) are highly favored in Li-S batteries due to their excellent performance in promoting the conversion of lithium polysulfides (LiPSs) and inhibiting their shuttling. However, the intricate and interrelated microstructures pose a challenge in deciphering the correlation between the chemical environment surrounding the active site and its catalytic activity. Here, a novel SAC featuring a distinctive Mn-N3-Cl moiety anchored on B, N co-doped carbon nanotubes (MnN3Cl@BNC) is synthesized. Subsequently, the selective removal of the Cl ligands while inheriting other microstructures is performed to elucidate the effect of Cl coordination on catalytic activity. The Cl coordination effectively enhances the electron cloud density of the Mn-N3-Cl moiety, reducing the band gap and increasing the adsorption capacity and redox kinetics of LiPSs. As a modified separator for Li-S batteries, MnN3Cl@BNC exhibits high capacities of 1384.1 and 743 mAh g-1 at 0.1 and 3C, with a decay rate of only 0.06% per cycle over 700 cycles at 1 C, which is much better than that of MnN3OH@BNC. This study reveals that Cl coordination positively contributes to improving the catalytic activity of the Mn-N3-Cl moiety, providing a fresh perspective for the design of high-performance SACs.

2.
Ecotoxicol Environ Saf ; 277: 116346, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669869

RESUMO

Microplastics, plastic particles 5 mm or less in size, are abundant in the environment; hence, the exposure of humans to microplastics is a great concern. Usually, the surface of microplastics found in the environment has undergone degradation by external factors such as ultraviolet rays and water waves. One of the characteristics of changes caused by surface degradation of microplastics is the introduction of oxygen-containing functional groups. Surface degradation alters the physicochemical properties of plastics, suggesting that the biological effects of environmentally degraded plastics may differ from those of pure plastics. However, the biological effects of plastics introduced with oxygen-containing functional groups through degradation are poorly elucidated owing to the lack of a plastic sample that imitates the degradation state of plastics found in the environment. In this study, we investigated the degradation state of microplastics collected from a beach. Next, we degraded a commercially available polyethylene (PE) particles via vacuum ultraviolet (VUV) irradiation and showed that chemical surface state of PE imitates that of microplastics in the environment. We evaluated the cytotoxic effects of degraded PE samples on immune and epithelial cell lines. We found that VUV irradiation was effective in degrading PE within a short period, and concentration-dependent cytotoxicity was induced by degraded PE in all cell lines. Our results indicate that the cytotoxic effect of PE on different cell types depends on the degree of microplastic degradation, which contributes to our understanding of the effects of PE microplastics on humans.


Assuntos
Microplásticos , Polietileno , Raios Ultravioleta , Poluentes Químicos da Água , Microplásticos/toxicidade , Polietileno/toxicidade , Polietileno/química , Humanos , Poluentes Químicos da Água/toxicidade , Praias , Sobrevivência Celular/efeitos dos fármacos , Animais , Plásticos/toxicidade , Linhagem Celular
3.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473996

RESUMO

With the continuous development of space station construction, space ecosystem research has attracted increasing attention. However, the complicated responses of different candidate plants and algae to radiation stress remain unclear. The present study, using integrated physiologic and proteomic analyses, was carried out to reveal the molecular mechanism of Navicula sp. in response to ultraviolet (UV) irradiation stress. Under 12~24 h of high-dose UV irradiation conditions, the contents of chlorophyll and soluble proteins in Navicula sp. cells were significantly higher than those in the control and 4~8 h of low-dose UV irradiation groups. The activity of catalase (CAT) increased with the extension of irradiation time, and the activity of superoxide dismutase (SOD) decreased first and then increased. Furthermore, differential volcano plot analysis of the proteomic data of Navicula sp. samples found only one protein with a significant difference. Differential protein GO analysis unveiled that UV irradiation can activate the antioxidant system of Navicula sp. and further impact photosynthesis by affecting the photoreaction and chlorophyll synthesis of Navicula sp. The most significant differences in KEGG pathway analysis were also associated with photosynthesis. The above results indicate that Navicula sp. has good UV radiation resistance ability by regulating its photosynthetic pigment content, photosynthetic activity, and antioxidant system, making it a potential candidate for the future development of space ecosystems.


Assuntos
Antioxidantes , Raios Ultravioleta , Antioxidantes/metabolismo , Ecossistema , Proteômica , Clorofila/metabolismo , Fotossíntese , Plantas/metabolismo
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891771

RESUMO

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Assuntos
Dano ao DNA , Poli(ADP-Ribose) Polimerase-1 , Raios Ultravioleta , Vitamina D , Humanos , Raios Ultravioleta/efeitos adversos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos , Calcitriol/farmacologia , Calcitriol/metabolismo , Reparo do DNA/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
5.
J Res Natl Inst Stand Technol ; 126: 126020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469452

RESUMO

Ultraviolet-C (UV-C) decontamination holds promise in combating the coronavirus disease 2019 pandemic, particularly with its potential to mitigate the N95 respirator shortage. Safe, effective, and reproducible decontamination depends critically on UV-C dose, yet dose is frequently measured and reported incorrectly, which results in misleading and potentially harmful protocols. Understanding best practices in UV-C dose measurement for N95 respirator decontamination is essential to the safety of medical professionals, researchers, and the public. Here, we outline the fundamental optical principles governing UV-C irradiation and detection, as well as the key metrics of UV-C wavelength and dose. In particular, we discuss the technical and regulatory distinctions between UV-C N95 respirator decontamination and other applications of germicidal UV-C, and we highlight the unique considerations required for UV-C N95 respirator decontamination. Together, this discussion will inform best practices for UV-C dose measurement for N95 respirator decontamination during crisis-capacity conditions.

6.
Foods ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540939

RESUMO

The effect of exposure of soft wheat buns to Ultraviolet-C radiation (UV-C, 253.7 nm) was studied as an alternative to conventional treatments to control fungal spoilage and prolong shelf life. To identify the most suitable operating conditions, the study included preliminary tests on the permeability of films to UV-C irradiation, and on treatment antifungal efficacy on target microorganisms (Penicillium digitatum and Saccharomycopsis fibuligera) in Petri dishes. A 125 µm T9250B film (Cryovac® Sealed Air S.r.l), commercially available for long-life bread treated with ethanol and conditioned in a modified atmosphere, was selected to pack buns before the UV-C treatment. The study was carried out along with the observation of the fungal growth of buns artificially inoculated with suspensions of P. digitatum and S. fibuligera, treated under UV-C at a distance of 25 cm between bread and the 15 W UV-C source, in comparison to untreated buns used as control. Estimation of fungal growth as well as sensory evaluation was made 2, 4, 7, 10 and 14 days after the treatment. UV-C treated buns showed a noticeable reduction of fungal spoilage and kept a tender texture for up to two weeks after packaging. UV-C treatment represents a good opportunity for the bakery industry, reducing costs and ensuring a prolonged shelf life of a commercial product, respecting the health and hedonistic expectations of the customers.

7.
Sci Total Environ ; 924: 171519, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460698

RESUMO

In recent years, among many oxidation pathways studied for atmospheric sulfate formation, the aqueous phase oxidation pathways of H2O2 and organic hydroperoxides (ROOHs) have attracted great scientific attention. Higher concentrations of H2O2 and ubiquitous ROOHs have been observed in atmospheric aqueous phase environments (cloud water, fog droplets, etc.). However, there are still some gaps in the study of their aqueous phase generation and their influences on sulfate formation. In this study, the aqueous phase photochemical reaction of methylglyoxal, a ubiquitous organic substance in the atmospheric aqueous phase, was studied under UV irradiation, and the generation of H2O2 and ROOHs in this system was investigated. It is found for the first time that the aqueous phase photolysis of methylglyoxal not only produces H2O2 but also produces ROOHs, and UV light and O2 are necessary for the formation of H2O2 and ROOHs. Based on the experimental results, the possible mechanism of aqueous phase photochemistry of methylglyoxal and the generation of H2O2 and ROOHs were proposed. The effect of aqueous phase photolysis of methylglyoxal on sulfate formation under different conditions was also investigated. The results show that the aqueous phase photolysis of methylglyoxal significantly promoted SO2 oxidation and sulfate formation, in which SO2 oxidation was realized by the generated H2O2, ROOHs and •OH radicals, and the importance of the formed ROOHs cannot be ignored. These results fill some gaps in the field of aqueous phase H2O2 and ROOHs production, and to a certain extent confirm the important roles of the aqueous phase photolysis of methylglyoxal and the formed H2O2 and ROOHs in the production of sulfate. The study reveals the new sources of H2O2 and ROOHs, and provides a new insight into the heterogeneous aqueous phase oxidation pathways and mechanisms of SO2 in cloud and fog droplets and haze particles.

8.
Sci Total Environ ; 922: 171339, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428595

RESUMO

Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.


Assuntos
Microalgas , Scenedesmus , Raios Ultravioleta , Anaerobiose , Bactérias , Biomassa , Nitrogênio , Bacteroidetes , Lipídeos
9.
Food Chem ; 461: 140889, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39173254

RESUMO

In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.

10.
Environ Sci Ecotechnol ; 22: 100455, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39114557

RESUMO

Harmful cyanobacterial blooms (HCBs) pose a global ecological threat. Ultraviolet C (UVC) irradiation at 254 nm is a promising method for controlling cyanobacterial proliferation, but the growth suppression is temporary. Resuscitation remains a challenge with UVC application, necessitating alternative strategies for lethal effects. Here, we show synergistic inhibition of Microcystis aeruginosa using ultraviolet A (UVA) pre-irradiation before UVC. We find that low-dosage UVA pre-irradiation (1.5 J cm-2) combined with UVC (0.085 J cm-2) reduces 85% more cell densities compared to UVC alone (0.085 J cm-2) and triggers mazEF-mediated regulated cell death (RCD), which led to cell lysis, while high-dosage UVA pre-irradiations (7.5 and 14.7 J cm-2) increase cell densities by 75-155%. Our oxygen evolution tests and transcriptomic analysis indicate that UVA pre-irradiation damages photosystem I (PSI) and, when combined with UVC-induced PSII damage, synergistically inhibits photosynthesis. However, higher UVA dosages activate the SOS response, facilitating the repair of UVC-induced DNA damage. This study highlights the impact of UVA pre-irradiation on UVC suppression of cyanobacteria and proposes a practical strategy for improved HCBs control.

11.
Food Chem ; 455: 139674, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824728

RESUMO

The pungency of huajiao (scientifically known as Zanthoxylum bungeanum) oil (ZBO), a crucial seasoning oil, is notably influenced by storage conditions, an aspect insufficiently explored in current research. Through the use of high-performance liquid chromatography and liquid chromatography-mass spectrometry, this study systematically investigated the stability of pungent compounds in ZBO under various storage conditions. It also elucidated the degradation and transformation mechanisms of these substances when exposed to ultraviolet (UV) irradiation. The results underscore elevated temperature, light exposure, oxygen, and storage duration as pivotal factors influencing compound degradation, with UV light emerging as the primary driving force. After 48 h of UV exposure, the primary pungent compound, hydroxy-α-sanshool, experienced a significant loss of 85.49%, indicating a pronounced inclination towards isomerization and oxidation. Notably, this study reveals, for the first time, the possible degradation-transformation pattern of hydroxy-γ-sanshool: a mutual conversion with hydroxy-γ-isosanshool and isomerization to (2E,4E,8Z,10E,12Z)-N-(2-hydroxy-2-methylpropyl) tetradeca-2,4,8,10,12-pentaenamide.


Assuntos
Armazenamento de Alimentos , Óleos de Plantas , Raios Ultravioleta , Zanthoxylum , Zanthoxylum/química , Óleos de Plantas/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
12.
Nanomicro Lett ; 16(1): 59, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117348

RESUMO

Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems. While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers, the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing. Herein, zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone) to form the all-organic polymer composites for high-temperature capacitive energy storage. Upon ultraviolet irradiation, the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures, which significantly reduces the high-field energy loss of the composites at 200 °C. Accordingly, the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm-3 at 200 °C. Along with outstanding cyclic stability of capacitive performance at 200 °C, this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites.

13.
Asian J Transfus Sci ; 17(2): 264-272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274979

RESUMO

In many fields of clinical medicine and blood transfusion, the human leukocyte antigen (HLA) system is crucial. Alloimmunization happens as a result of an immune response to foreign antigens encountered during blood transfusion. This gives rise to alloantibodies against red blood cells (RBCs), HLA, or human platelet antigen (HPA). HLA alloimmunization following allogeneic transfusion was shown to be a result of contaminating white blood cells (WBCs) present in the product. It is a common complication of transfusion therapy that leads to difficulties in clinical intolerance and refractoriness to platelet transfusion during patient management. Single-donor platelets, prophylactic HLA matching, leukoreduction, and irradiation of cellular blood products are some of the mechanisms to prevent HLA alloimmunization during a blood transfusion. Now, the best approach to reduce the occurrence of primary HLA alloimmunization is the removal of WBCs from the blood by filtration.

14.
Arq. bras. oftalmol ; 85(4): 389-398, July-Aug. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1383816

RESUMO

ABSTRACT Purpose: To systematically examine the dynamic changes and time sequence in corneal epithelial cell apoptosis after excessive ultraviolet B irradiation. Methods: Ultraviolet B (144 mJ/cm2) was used to irradiate rat corneal epithelial cells for 2 h. Cell morphology was observed on differential interference contrast microscopy, and the numbers of the different kinds of apoptotic cells were counted using the ImageJ software. Cell viability was measured with the 3-(4,5-dimethyl-2-thiazolyl)-2,5- diphenyl-2-H-tetrazolium bromide method. Cell apoptotic rate and loss of mitochondrial membrane potential were detected using flow cytometric analyses. The expression levels of 3 apoptotic genes were measured with real-time quantitative polymerase chain reaction at different time points within 0-24 h after irradiation. Results: After 144-mJ/cm2 ultraviolet B irradiation for 2 h, the expression levels of caspase-8 and Bax were highest at 0 h; furthermore, the mitochondrial membrane potential decreased at 0 h and remained constant for 6 h in a subsequent culture. At 6 h, caspase-3 was activated. The decrease in cell viability and increase in apoptotic rate peaked at 6 h. The caspase-3 expression level decreased within 12-24 h, which led to a decline in apoptotic rate and change in apoptotic stage. Conclusions: The corneal epithelial cells exhibited rapid apoptosis after ultraviolet B irradiation, which was associated with both extrinsic and intrinsic pathways.


RESUMO Objetivos: Explorar sistematicamente as mudanças dinâmicas e a sequência temporal no processo de apoptose de células epiteliais corneanas após excesso de irradiação com ultravioleta B. Métodos: A radiação ultravioleta B (144 mJ/cm2) foi utilizada para irradiar células epiteliais da córnea de rato durante 2h. A morfologia celular foi observada por meio de microscópio de contraste de interferência diferencial, e os números de diferentes tipos de células apoptóticas foram contados e registrados pelo software ImageJ. A viabilidade celular foi medida pelo método brometo de 3- (4, 5-dimetil-2-tiazolil) -2, 5-difenil-2-H-tetrazólio. A taxa apoptótica celular e a perda do potencial da membrana mitocondrial foram detectadas por meio de análises citométricas de fluxo. Os níveis de expressão de três genes apoptóticos foram medidos por reação em cadeia da polimerase quantitativa em tempo real em diferentes momentos dentro de 0-24 h após a irradiação. Resultados: Após 144 mJ/cm2 de irradiação com ultravioleta B por 2h, os níveis de expressão de caspase-8 e Bax foram maiores em 0h; o potencial da membrana mitocondrial diminuiu a 0h e permaneceu constante por 6h na cultura subsequente. Às 6h, a caspase-3 foi ativada. A diminuição da viabilidade celular e o aumento da taxa apoptótica atingiu o pico em 6h. A expressão de caspase-3 diminuiu dentro de 12 - 24 h, levando a um declínio na taxa apoptótica e alteração no estágio apoptótico. Conclusões: As células epiteliais da córnea apresentaram uma apoptose rápida após excesso de irradiação com ultravioleta B, e esse processo foi associado tanto à via extrínseca como à via intrínseca.

15.
Braz. j. microbiol ; 43(2): 441-448, Apr.-June 2012. graf, tab
Artigo em Inglês | LILACS | ID: lil-644457

RESUMO

The use of the filamentous fungus, Ashbya gossypii, to improve riboflavin production at an industrial scale is described in this paper. A riboflavin overproducing strain was isolated by ultraviolet irradiation. Ten minutes after spore suspensions of A. gossypii were irradiated by ultraviolet light, a survival rate of 5.5% spores was observed, with 10% of the surviving spores giving rise to riboflavin-overproducing mutants. At this time point, a stable mutant of the wild strain was isolated. Riboflavin production of the mutant was two fold higher than that of the wild strain in flask culture. When the mutant was growing on the optimized medium, maximum riboflavin production could reach 6.38 g/l. It has even greater promise to increase its riboflavin production through dynamic analysis of its growth phase parameters, and riboflavin production could reach 8.12 g/l with pH was adjusted to the range of 6.0-7.0 using KH2PO4 in the later growth phase. This mutant has the potential to be used for industrial scale riboflavin production.


Assuntos
Esporos Fúngicos/isolamento & purificação , Fungos/genética , Fungos/isolamento & purificação , Riboflavina/isolamento & purificação , Crescimento , Métodos , Otimização de Processos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA