Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 233: 116430, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329943

RESUMO

Natural deposits and human-caused releases of uranium have led to its contamination in the nature. Toxic environmental contaminants such as uranium that harm cerebral processes specifically target the brain. Numerous experimental researches have shown that occupational and environmental uranium exposure can result in a wide range of health issues. According to the recent experimental research, uranium can enter the brain after exposure and cause neurobehavioral problems such as elevated motion related activity, disruption of the sleep-wake cycle, poor memory, and elevated anxiety. However, the exact mechanism behind the factor for neurotoxicity by uranium is still uncertain. This review primarily aims on a brief overview of uranium, its route of exposure to the central nervous system, and the likely mechanism of uranium in neurological diseases including oxidative stress, epigenetic modification, and neuronal inflammation has been described, which could present the probable state-of-the-art status of uranium in neurotoxicity. Finally, we offer some preventative strategies to workers who are exposed to uranium at work. In closing, this study highlights the knowledge of uranium's health dangers and underlying toxicological mechanisms is still in its infancy, and there is still more to learn about many contentious discoveries.


Assuntos
Síndromes Neurotóxicas , Urânio , Humanos , Urânio/toxicidade , Exposição Ambiental , Encéfalo , Síndromes Neurotóxicas/etiologia , Aprendizagem
2.
Environ Res ; 181: 108927, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796256

RESUMO

Indications of proximal tubule effects have been observed in recent surveillance study of Gulf War veterans exposed to depleted uranium (DU). This gives some support for the suspicion that DU may represent one of the causes for the so-called Persian Gulf syndrome. Proposed effects may be especially harmful if the toxicity hits the mitochondrial DNA since the mitochondria lack the nucleotide excision repair mechanism, which is needed for repairing bulky adducts that have been associated with DU. It is a plausible working hypothesis that a significant part of the symptoms from various organs, which have been observed among veterans from Gulf War 1 and that have been grouped under the name of the Persian Gulf syndrome, may be explained as a consequence of mitochondrial DNA damage in various cell types and organs. Interpretation of observations, on military personnel and civilians after Gulf War 1, is associated with difficulties because of the abundance of potential confounding factors. The symptoms observed on veterans from Gulf War 1 may be attributed to a multiplicity of substances functioning directly or indirectly as mitochondrial mutagens. A concise analysis of the cascade of toxic effects initiated by DU exposure in the human body is the subject of this article.


Assuntos
Militares , Síndrome do Golfo Pérsico , Urânio , Veteranos , Guerra do Golfo , Humanos , Exposição Ocupacional
3.
J Toxicol Environ Health A ; 81(20): 1083-1097, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30373484

RESUMO

A small group of Gulf War I veterans wounded in depleted uranium (DU) friendly-fire incidents have been monitored in a clinical surveillance program since 1993. During the spring of 2017, 42 members of the cohort were evaluated with a protocol which includes exposure monitoring for total and isotopic uranium concentrations in urine and a comprehensive assessment of health outcomes including measures of bone metabolism, and for participants >50 years, bone mineral density (BMD) determination. Elevated urine U concentrations were observed in cohort members with retained DU shrapnel fragments. Only the mean serum estradiol concentration, a marker of bone metabolism, was found to be significantly different for lower-vs- higher urine U (uU) cohort sub-groups. For the first time, a significant deficit in BMD was observed in the over age 50, high uU sub-group. After more than 25 years since first exposure to DU, an aging cohort of military veterans continues to exhibit few U-related adverse health effects in known target organs of U toxicity. The new finding of reduced BMD in older cohort members, while biologically plausible, was not suggested by other measures of bone metabolism in the full (all ages) cohort, as these were predominantly within normal limits over time. Only estradiol was recently found to display a difference as a function of uU grouping. As BMD is further impacted by aging and the U-burden from fragment absorption accrues in this cohort, a U effect may be clarified in future surveillance visits.


Assuntos
Osso e Ossos/efeitos da radiação , Guerra do Golfo , Exposição Ocupacional/efeitos adversos , Urânio/efeitos adversos , Veteranos/estatística & dados numéricos , Estudos de Coortes , Monitoramento Epidemiológico , Humanos , Masculino , Pessoa de Meia-Idade , Urânio/urina
4.
Environ Res ; 152: 175-184, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27792941

RESUMO

BACKGROUND: A small group of Gulf War I veterans wounded in depleted uranium (DU) friendly-fire incidents have been monitored for health changes in a clinical surveillance program at the Veterans Affairs Medical Center, Baltimore since 1994. METHODS: During the spring of 2015, an in-patient clinical surveillance protocol was performed on 36 members of the cohort, including exposure monitoring for total and isotopic uranium concentrations in urine and a comprehensive assessment of health outcomes. RESULTS: On-going mobilization of U from embedded fragments is evidenced by elevated urine U concentrations. The DU isotopic signature is observed principally in participants possessing embedded fragments. Those with only an inhalation exposure have lower urine U concentration and a natural isotopic signature. CONCLUSIONS: At 25 years since first exposure to DU, an aging cohort of military veterans continues to show no U-related health effects in known target organs of U toxicity. As U body burden continues to accrue from in-situ mobilization from metal fragment depots, and increases with exposure duration, critical tissue-specific U concentration thresholds may be reached, thus recommending on-going surveillance of this veteran cohort.


Assuntos
Guerra do Golfo , Militares/estatística & dados numéricos , Exposição Ocupacional , Urânio/toxicidade , Veteranos/estatística & dados numéricos , Baltimore , Estudos Longitudinais
5.
Am J Ind Med ; 58(6): 583-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25907888

RESUMO

BACKGROUND: A small group of Gulf War I veterans wounded in depleted uranium (DU) friendly fire incidents have been monitored in a clinical surveillance program at the Veterans Affairs Medical Center, Baltimore since 1994. METHODS: An in-patient clinical surveillance protocol was performed on 35 members of the cohort, including exposure monitoring for total and isotopic uranium concentrations in urine and a comprehensive assessment of health outcomes. RESULTS: Although urine U concentrations continue to be elevated in this group, illustrating on-going in situ mobilization of U from embedded fragments, no consistent U-related health effects have been observed. CONCLUSIONS: Now more than 20 years since first exposure to DU, an aging cohort of military veterans continues to show no U-related health effects in known target organs of U toxicity. As tissue concentrations continue to accrue with exposure duration, critical tissue-specific U concentration thresholds may be reached, thus recommending on-going surveillance of this veteran cohort.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Vigilância da População/métodos , Urânio/urina , Veteranos/estatística & dados numéricos , Exposição à Guerra/efeitos adversos , Adulto , Biomarcadores/análise , Biomarcadores/urina , Osso e Ossos/metabolismo , Guerra do Golfo , Humanos , Isótopos/toxicidade , Isótopos/urina , Testes de Função Renal , Estudos Longitudinais , Pulmão/efeitos da radiação , Metais/urina , Pessoa de Meia-Idade , Estados Unidos , United States Department of Veterans Affairs , Urânio/toxicidade
6.
Int J Mol Sci ; 16(6): 12405-23, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26042463

RESUMO

To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed.


Assuntos
Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Urânio/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
7.
BMC Pharmacol Toxicol ; 25(1): 14, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308341

RESUMO

OBJECTIVE: Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS: Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS: TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION: The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.


Assuntos
Urânio , Ratos , Masculino , Animais , Lipocalina-2/metabolismo , Urânio/toxicidade , Urânio/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo , Antioxidantes/farmacologia , Rim/patologia , Inflamação/metabolismo , Ureia
8.
Plant Physiol Biochem ; 185: 101-111, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667317

RESUMO

Uranium, a heavy metal and primordial radionuclide, is present in surface waters and soils both naturally and due to industrial activities. Uranium is known to be toxic to plants and its uptake and toxicity can be influenced by multiple factors such as pH and the presence of different ions. However, the precise role of the different ions in uranium uptake is not yet known. Here we investigated whether calcium influences uranium uptake and toxicity in the terrestrial plant Arabidopsis thaliana. To this end, A. thaliana plants were exposed to different calcium and uranium concentrations and furthermore, calcium channels were blocked using the calcium channel blocker lanthanum chloride (LaCl3). Fresh weight, relative growth rate, concentration of nutrients and uranium and gene expression of oxidative stress-related genes and calcium transporters were determined in roots and shoots. Calcium affected plant growth and oxidative stress in both control (no uranium) and uranium-exposed plants. In shoots, this was influenced by the total calcium concentration, but not by the different tested uranium concentrations. Uranium in turn did influence calcium uptake and distribution. Uranium-exposed plants grown in a medium with a higher calcium concentration showed an increase in gene expression of NADPH oxidases RBOHC and RBOHE and calcium transporter CAX7 after uranium exposure. In roots, these calcium-dependent responses in gene expression were not observed. This indicates that calcium indeed affects uranium toxicity, but only in shoots. In addition, a clear influence of uranium and LaCl3 (separately and combined) on the expression of calcium transporters was observed.


Assuntos
Arabidopsis , Cálcio , Urânio , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lantânio/farmacologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Urânio/toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-31281289

RESUMO

In a longitudinal study of 6,158 Kuwaiti children, we selected 94 for salivary metabolomic analysis who were neither obese (by waist circumference) nor metabolic syndrome (MetS) positive (<3 diagnostic features). Half (43) remained healthy for 2 years. The other half (51) were selected because they became obese and MetS positive 2 years later. In the half becoming obese, metabolomic analysis revealed that the level of salivary N1-Methyl-2-pyridone-5-carboxamide (2PY) had the highest positive association with obesity (p = 0.0003, AUC = 0.72) of 441 salivary biochemicals detected. 2PY is a recognized uremic toxin. Also, 2PY has been identified as a biomarker for uranium uptake. Considering that a relatively recent military conflict with documented uranium contamination of the area suggests that this weight gain could be a toxicological effect of long-time, low-level uranium ingestion. Comparison of salivary 2PY in samples from the USA and Kuwait found that only Kuwait samples were significantly related to obesity. Also, the geographic distribution of both reported soil radioactivity from 238U and measured salivary 2PY was highest in the area where military activity was highest. The prevalence pattern of adult diabetes in Kuwait suggests that a transient diabetogenic factor has been introduced into the Kuwaiti population. Although we did not measure uranium in our study, the presence of a salivary biomarker for uranium consumption suggests potential toxicity related to obesity in children.

10.
J Inorg Biochem ; 189: 1-6, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30149122

RESUMO

Uranium toxicity depends on its chemical properties rather than on its radioactivity and involves its interaction with macromolecules. Here, a systematic survey of the structural features of the uranyl sites observed in protein crystal structures deposited in the Protein Data Bank is reported. Beside the two uranyl oxygens, which occupy the axial positions, uranium tends to be coordinated by five other oxygen atoms, which occupy the equatorial vertices of a pentagonal bipyramid. Even if one or more of these equatorial positions are sometime empty, they can be occupied only by oxygen atoms that belong to the carboxylate groups of Glu and Asp side-chains, usually acting as monodentate ligands, to water molecules, or to acetate anions. Although several uranium sites appear undefined or unrefined, with a single uranium atom that lacks the two uranyl oxygen atoms, this problem seems to become less frequent in recent years. However, it is clear that the crystallographic refinements of the uranyl sites are not always well restrained and a better parametrization of these restraints seems to be necessary.


Assuntos
Proteínas/química , Urânio/química , Bases de Dados de Proteínas , Oxigênio/química , Estereoisomerismo
11.
Curr Med Chem ; 25(1): 49-64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28462701

RESUMO

Depleted uranium (DU) is generally considered an emerging pollutant, first extensively introduced into environment in the early nineties in Iraq, during the military operation called "Desert Storm". DU has been hypothesized to represent a hazardous element both for soldiers exposed as well as for the inhabitants of the polluted areas in the war zones. In this review, the possible consequences on human health of DU released in the environment are critically analyzed. In the first part, the chemical properties of DU and the principal civil and military uses are summarized. A concise analysis of the mechanisms underlying absorption, blood transport, tissue distribution and excretion of DU in the human body is the subject of the second part of this article. The following sections deal with pathological condition putatively associated with overexposure to DU. Developmental and birth defects, the Persian Gulf syndrome, and kidney diseases that have been associated to DU are the arguments treated in the third section. Finally, data regarding DU exposure and cancer insurgence will be critically analyzed, including leukemia/lymphoma, lung cancer, uterine cervix cancer, breast cancer, bladder cancer and testicular cancer. The aim of the authors is to give a contribution to the debate on DU and its effects on human health and disease.


Assuntos
Neoplasias/induzido quimicamente , Urânio , Humanos , Urânio/efeitos adversos , Urânio/metabolismo , Urânio/farmacocinética
12.
Artigo em Inglês | MEDLINE | ID: mdl-26558360

RESUMO

BACKGROUND AND AIMS: The global incidence of renal cell cancer is increasing annually and the causes are multifactorial. Early diagnosis and successful urological procedures with partial or total nephrectomy can be life-saving. However, only up to 10% of RCC patients present with characteristic clinical symptoms. Over 60% are detected incidentally in routine ultrasound examination. The question of screening and preventive measures greatly depends on the cause of the tumor development. For the latter reason, this review focuses on etiology, pathophysiology and risk factors for renal neoplasm. METHODS: A literature search using the databases Medscape, Pubmed, UpToDate and EBSCO from 1945 to 2015. RESULTS AND CONCLUSIONS: Genetic predisposition/hereditary disorders, obesity, smoking, various nephrotoxic industrial chemicals, drugs and natural/manmade radioactivity all contribute and enviromental risks are a serious concern in terms of prevention and the need to screen populations at risk. Apropos treatment, current oncological research is directed to blocking cancer cell division and inhibiting angiogenesis based on a knowledge of molecular pathways.


Assuntos
Carcinoma de Células Renais/etiologia , Neoplasias Renais/etiologia , Carcinogênese , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/terapia , Predisposição Genética para Doença/genética , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/terapia , Metástase Neoplásica , Estadiamento de Neoplasias , Exposição à Radiação/efeitos adversos , Fatores de Risco , Compostos de Urânio/efeitos adversos
13.
J Environ Radioact ; 151 Pt 2: 427-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26187266

RESUMO

Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 µM up to 150 µM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 µM, 7.7-16.4 µM and 19.4-37.2 µM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time.


Assuntos
Araceae/efeitos da radiação , Urânio/toxicidade , Poluentes Radioativos da Água/toxicidade , Araceae/crescimento & desenvolvimento , Carbonatos/química , Relação Dose-Resposta à Radiação , Concentração de Íons de Hidrogênio , Fosfatos/química
14.
J Environ Radioact ; 150: 36-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26263174

RESUMO

Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 µM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 µM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress.


Assuntos
Arabidopsis/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Urânio/toxicidade , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Concentração de Íons de Hidrogênio , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA