Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 35: 403-439, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28226229

RESUMO

This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.


Assuntos
Biologia Computacional , Simulação por Computador , Modelos Imunológicos , Linfócitos T/imunologia , Vacinas/imunologia , Animais , Pesquisa Biomédica , Ensaios de Triagem em Larga Escala , Humanos , Monitorização Imunológica/métodos , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais
2.
Annu Rev Immunol ; 34: 635-59, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27168247

RESUMO

HIV employs multiple means to evade the humoral immune response, particularly the elicitation of and recognition by broadly neutralizing antibodies (bnAbs). Such antibodies can act antivirally against a wide spectrum of viruses by targeting relatively conserved regions on the surface HIV envelope trimer spike. Elicitation of and recognition by bnAbs are hindered by the arrangement of spikes on virions and the relatively difficult access to bnAb epitopes on spikes, including the proximity of variable regions and a high density of glycans. Yet, in a small proportion of HIV-infected individuals, potent bnAb responses do develop, and isolation of the corresponding monoclonal antibodies has been facilitated by identification of favorable donors with potent bnAb sera and by development of improved methods for human antibody generation. Molecular studies of recombinant Env trimers, alone and in interaction with bnAbs, are providing new insights that are fueling the development and testing of promising immunogens aimed at the elicitation of bnAbs.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV/imunologia , Imunização Passiva/métodos , Vírion/imunologia , Animais , Sequência Conservada , Infecções por HIV/prevenção & controle , Humanos , Evasão da Resposta Imune , Imunização Passiva/tendências , Proteínas do Envelope Viral/imunologia
3.
Cell ; 186(11): 2392-2409.e21, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37164012

RESUMO

T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).


Assuntos
Vacina BNT162 , COVID-19 , Animais , Cricetinae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Epitopos , SARS-CoV-2/genética
4.
Cell ; 185(4): 641-653.e17, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35123651

RESUMO

HIV-1 Env mediates viral entry into host cells and is the sole target for neutralizing antibodies. However, Env structure and organization in its native virion context has eluded detailed characterization. Here, we used cryo-electron tomography to analyze Env in mature and immature HIV-1 particles. Immature particles showed distinct Env positioning relative to the underlying Gag lattice, providing insights into long-standing questions about Env incorporation. A 9.1-Å sub-tomogram-averaged reconstruction of virion-bound Env in conjunction with structural mass spectrometry revealed unexpected features, including a variable central core of the gp41 subunit, heterogeneous glycosylation between protomers, and a flexible stalk that allows Env tilting and variable exposure of neutralizing epitopes. Together, our results provide an integrative understanding of HIV assembly and structural variation in Env antigen presentation.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Vírion/ultraestrutura , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura , Produtos do Gene gag do Vírus da Imunodeficiência Humana/ultraestrutura , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Sequência de Aminoácidos , Dissulfetos/farmacologia , Epitopos/química , Células HEK293 , Proteína gp41 do Envelope de HIV/química , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Testes de Neutralização , Peptídeos/química , Polissacarídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
5.
Cell ; 184(25): 6052-6066.e18, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852239

RESUMO

The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.


Assuntos
Anticorpos Neutralizantes , Vírus da Dengue , Dengue , Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Drosophila melanogaster , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
6.
Cell ; 184(21): 5432-5447.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619077

RESUMO

Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.

7.
Immunity ; 55(12): 2419-2435.e10, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36370711

RESUMO

Increased immune evasion by SARS-CoV-2 variants of concern highlights the need for new therapeutic neutralizing antibodies. Immunization with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicits cross-reactive polyclonal antibodies against conserved sarbecovirus RBD epitopes. Here, we identified monoclonal antibodies (mAbs) capable of cross-reactive binding and neutralization of animal sarbecoviruses and SARS-CoV-2 variants by screening single mouse B cells secreting IgGs that bind two or more sarbecovirus RBDs. Single-particle cryo-EM structures of antibody-spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes. Structural analyses revealed neutralization mechanisms, potentials for intra-spike trimer cross-linking by IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb-resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticle vaccination to generate and identify therapeutic pan-sarbecovirus and pan-variant mAbs.


Assuntos
COVID-19 , Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Camundongos , Animais , Humanos , SARS-CoV-2 , Epitopos , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais , Testes de Neutralização , Anticorpos Antivirais , Anticorpos Neutralizantes
8.
Proc Natl Acad Sci U S A ; 121(16): e2314990121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593070

RESUMO

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Humanos , Animais , Camundongos , Microscopia Crioeletrônica , Glicoproteínas , Internalização do Vírus
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38770719

RESUMO

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Assuntos
Algoritmos , Vacinas Anticâncer , Método de Monte Carlo , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , Antígenos HLA/imunologia , Antígenos HLA/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Mutação
10.
Trends Immunol ; 44(12): 938-944, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37940395

RESUMO

Current influenza A and B virus (IABV) vaccines provide suboptimal protection and efforts are underway to develop a universal IABV vaccine. Blood neutralizing antibodies are the current gold standard for protection, but many processes that regulate human IABV-specific immunity occur in mucosal and lymphoid tissues. We need an improved mechanistic understanding of how immune cells respond within these tissues to advance our current (slow and expensive) vaccine testing model. We posit that advanced in vitro models of human adaptive immunity can bridge some of the gaps between vaccine design, animal models, and human clinical trials. Here, we highlight how they can be integrated into current practices and play a role in reverse translating the defined features of protective vaccines to rationally design new candidates.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Imunidade Adaptativa , Organoides , Influenza Humana/prevenção & controle
11.
Immunity ; 46(5): 777-791.e10, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514685

RESUMO

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo
12.
J Virol ; 98(2): e0137223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38214525

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Henipavirus , Vírus Nipah , Proteínas Virais , Humanos , Glicoproteínas/metabolismo , Vírus Hendra/fisiologia , Henipavirus/fisiologia , Vírus Nipah/genética , Vírus Nipah/metabolismo , Peptídeos/metabolismo , Proteínas Virais de Fusão , Proteínas Virais/metabolismo
13.
Immunity ; 44(4): 939-50, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27067056

RESUMO

VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Anticorpos Amplamente Neutralizantes , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Dados de Sequência Molecular
14.
Proc Natl Acad Sci U S A ; 119(21): e2200821119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594401

RESUMO

Influenza virus hemagglutinin (HA) has been the primary target for influenza vaccine development. Broadly protective antibodies targeting conserved regions of the HA unlock the possibility of generating universal influenza immunity. Two group 2 influenza A chimeric HAs, cH4/3 and cH15/3, were previously designed to elicit antibodies to the conserved HA stem. Here, we show by X-ray crystallography and negative-stain electron microscopy that a broadly protective antistem antibody can stably bind to cH4/3 and cH15/3 HAs, thereby validating their potential as universal vaccine immunogens. Furthermore, flexibility was observed in the head domain of the chimeric HA structures, suggesting that antibodies could also potentially interact with the head interface epitope. Our structural and binding studies demonstrated that a broadly protective antihead trimeric interface antibody could indeed target the more open head domain of the cH15/3 HA trimer. Thus, in addition to inducing broadly protective antibodies against the conserved HA stem, chimeric HAs may also be able to elicit antibodies against the conserved trimer interface in the HA head domain, thereby increasing the vaccine efficacy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle
15.
J Infect Dis ; 229(Supplement_2): S285-S292, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804521

RESUMO

COVID-19 has intensified humanity's concern about the emergence of new pandemics. Since 2018, epidemic outbreaks of the mpox virus have become worrisome. In June 2022, the World Health Organization declared the disease a global health emergency, with 14 500 cases reported by the Centers for Disease Control and Prevention in 60 countries. Therefore, the development of a vaccine based on the current virus genome is paramount in combating new cases. In view of this, we hypothesized the obtainment of rational immunogenic peptides predicted from proteins responsible for entry of the mpox virus into the host (A17L, A26L/A30L, A33R, H2R, L1R), exit (A27L, A35R, A36R, C19L), and both (B5R). To achieve this, we aligned the genome sequencing data of mpox virus isolated from an infected individual in the United States in June 2022 (ON674051.1) with the reference genome dated 2001 (NC_003310.1) for conservation analysis. The Immune Epitope Database server was used for the identification and characterization of the epitopes of each protein related to major histocompatibility complex I or II interaction and recognition by B-cell receptors, resulting in 138 epitopes for A17L, 233 for A28L, 48 for A33R, 77 for H2R, 77 for L1R, 270 for A27L, 72 for A35R, A36R, 148 for C19L, and 276 for B5R. These epitopes were tested in silico for antigenicity, physicochemical properties, and allergenicity, resulting in 51, 40, 10, 34, 38, 57, 25, 7, 47, and 53 epitopes, respectively. Additionally, to select an epitope with the highest promiscuity of binding to major histocompatibility complexes and B-cell receptor simultaneously, all epitopes of each protein were aligned, and the most repetitive and antigenic regions were identified. By classifying the results, we obtained 23 epitopes from the entry proteins, 16 from the exit proteins, and 7 from both. Subsequently, 1 epitope from each protein was selected, and all 3 were fused to construct a chimeric protein that has potential as a multiepitope vaccine. The constructed vaccine was then analyzed for its physicochemical, antigenic, and allergenic properties. Protein modeling, molecular dynamics, and molecular docking were performed on Toll-like receptors 2, 4, and 8, followed by in silico immune simulation of the vaccine. Finally, the results indicate an effective, stable, and safe vaccine that can be further tested, especially in vitro and in vivo, to validate the findings demonstrated in silico.


Assuntos
Imunoinformática , Mpox , Humanos , Simulação de Acoplamento Molecular , Peptídeos , Epitopos , Epitopos de Linfócito T , Epitopos de Linfócito B , Biologia Computacional , Vacinas de Subunidades Antigênicas
16.
Eur J Immunol ; 53(10): e2350408, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37435628

RESUMO

The structure-based design of antigens holds promise for developing vaccines with higher efficacy and improved safety profiles. We postulate that abrogation of host receptor interaction bears potential for the improvement of vaccines by preventing antigen-induced modification of receptor function as well as the displacement or masking of the immunogen. Antigen modifications may yet destroy epitopes crucial for antibody neutralization. Here, we present a methodology that integrates deep mutational scans to identify and score SARS-CoV-2 receptor binding domain variants that maintain immunogenicity, but lack interaction with the widely expressed host receptor. Single point mutations were scored in silico, validated in vitro, and applied in vivo. Our top-scoring variant receptor binding domain-G502E prevented spike-induced cell-to-cell fusion, receptor internalization, and improved neutralizing antibody responses by 3.3-fold in rabbit immunizations. We name our strategy BIBAX for body-inert, B-cell-activating vaccines, which in the future may be applied beyond SARS-CoV-2 for the improvement of vaccines by design.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Coelhos , Anticorpos Neutralizantes , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais
17.
Trends Immunol ; 42(3): 186-197, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514459

RESUMO

'Reverse vaccinology 2.0' aims to rationally reproduce template antibody responses, such as broadly neutralizing antibodies against human immunodeficiency virus-1. While observations of antibody convergence across individuals support the assumption that responses may be replicated, the diversity of humoral immunity and the process of antibody selection are rooted in stochasticity. Drawing from experience with in vitro antibody engineering by directed evolution, we consider how antibody selection may be driven, as in germline-targeting vaccine approaches to elicit broadly neutralizing antibodies and illustrate the potential consequences of over-defining a template antibody response. We posit that the prospective definition of template antibody responses and the odds of replicating them must be considered within the randomness of humoral immunity.


Assuntos
Anticorpos Neutralizantes , HIV-1 , Formação de Anticorpos , Anticorpos Anti-HIV , Humanos , Estudos Prospectivos
18.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637649

RESUMO

A vaccine which is effective against the HIV virus is considered to be the best solution to the ongoing global HIV/AIDS epidemic. In the past thirty years, numerous attempts to develop an effective vaccine have been made with little or no success, due, in large part, to the high mutability of the virus. More recent studies showed that a vaccine able to elicit broadly neutralizing antibodies (bnAbs), that is, antibodies that can neutralize a high fraction of global virus variants, has promise to protect against HIV. Such a vaccine has been proposed to involve at least three separate stages: First, activate the appropriate precursor B cells; second, shepherd affinity maturation along pathways toward bnAbs; and, third, polish the Ab response to bind with high affinity to diverse HIV envelopes (Env). This final stage may require immunization with a mixture of Envs. In this paper, we set up a framework based on theory and modeling to design optimal panels of antigens to use in such a mixture. The designed antigens are characterized experimentally and are shown to be stable and to be recognized by known HIV antibodies.


Assuntos
Vacinas contra a AIDS/biossíntese , Antígenos Virais/química , Anticorpos Amplamente Neutralizantes/biossíntese , Epitopos/química , Anticorpos Anti-HIV/biossíntese , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/genética , Sequência de Aminoácidos , Antígenos Virais/genética , Antígenos Virais/imunologia , Sítios de Ligação , Anticorpos Amplamente Neutralizantes/química , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Cristalografia por Raios X , Epitopos/genética , Epitopos/imunologia , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/genética , Proteína gp160 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas
19.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34551978

RESUMO

Human metapneumovirus (HMPV) is a major cause of respiratory disease worldwide, particularly among children and the elderly. Although there is no licensed HMPV vaccine, promising candidates have been identified for related pneumoviruses based on the structure-based stabilization of the fusion (F) glycoprotein trimer, with prefusion-stabilized F glycoprotein trimers eliciting significantly higher neutralizing responses than their postfusion F counterparts. However, immunization with HMPV F trimers in either prefusion or postfusion conformations has been reported to elicit equivalent neutralization responses. Here we investigate the impact of stabilizing disulfides, especially interprotomer disulfides (IP-DSs) linking protomers of the F trimer, on the elicitation of HMPV-neutralizing responses. We designed F trimer disulfides, screened for their expression, and used electron microscopy (EM) to confirm their formation, including that of an unexpected postfusion variant. In mice, IP-DS-stabilized prefusion and postfusion HMPV F elicited significantly higher neutralizing responses than non-IP-DS-stabilized HMPV Fs. In macaques, the impact of IP-DS stabilization was more measured, although IP-DS-stabilized variants of either prefusion or postfusion HMPV F induced neutralizing responses many times the average titers observed in a healthy human cohort. Serological and absorption-based analyses of macaque responses revealed elicited HMPV-neutralizing responses to be absorbed differently by IP-DS-containing and by non-IP-DS-containing postfusion Fs, suggesting IP-DS stabilization to alter not only the immunogenicity of select epitopes but their antigenicity as well. We speculate the observed increase in immunogenicity by IP-DS trimers to be related to reduced interprotomer flexibility within the HMPV F trimer.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dissulfetos/química , Epitopos/imunologia , Glicoproteínas/imunologia , Metapneumovirus/imunologia , Mutação , Animais , Glicoproteínas/genética , Humanos , Imunização , Macaca , Metapneumovirus/genética , Camundongos , Regiões Promotoras Genéticas
20.
BMC Bioinformatics ; 24(1): 65, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829112

RESUMO

BACKGROUND: It seems that several members of intestinal gut microbiota like Streptococcus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and immunoinformatics approaches to design a potential epitope-based multi-epitope vaccine to prevent CRC with optimal population coverage. METHODS: In this study, ten amino acid sequences of CRC-related pathogens were retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all sequences were performed using web servers. A total of three linkers, AAY, GPGPG, and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final construct was subjected to disulfide engineering, molecular docking, immune simulation and codon adaptation to design an effective vaccine production strategy. RESULTS: A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The predicted epitopes were joined by appropriate linkers because they play an important role in producing an extended conformation and protein folding. The final multi-epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, which revealed stable and strong binding interactions. Immunity simulation of the vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T cells and INF-γ. CONCLUSION: Finally, the results showed that the designed multi-epitope vaccine could serve as an excellent prophylactic candidate against CRC-associated pathogens, but in vitro and animal studies are needed to justify our findings for its use as a possible preventive measure.


Assuntos
Neoplasias Colorretais , Epitopos de Linfócito T , Animais , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Vacinas de Subunidades Antigênicas/química , Epitopos de Linfócito B , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA