Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2304835, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37653619

RESUMO

Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.

2.
Small ; 20(13): e2306561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968810

RESUMO

The electrochemical properties of vanadium-based materials as cathode materials for aqueous zinc ion batteries are still restricted by low conductivity, sluggish reaction kinetics, and poor structural stability. Herein, the [VO6] octahedron, as the basic unit of vanadium-oxide layer of ammonium vanadates (NH4V4O10, denoted as NVO), is incorporated by F atoms to regulate the coordinated environment of vanadium. Density functional theory (DFT) calculations and experimental results show that both physicochemical and electrochemical properties of NVO are improved by F-doping. The enhanced electronic conductivity accelerates the electron transfer and the expanded interlayer spacing expedites the diffusion kinetics of zinc ions. As a result, the F-doped NVO (F-NVO) electrode shows a high discharge capacity (465 mAh g-1 at 0.1 A g-1), good rate capability (260 mAh g-1 at 5 A g-1), and long-term cycling stability (88% capacity retention over 2000 cycles at 4 A g-1). The reaction kinetics and energy storage mechanism of F-NVO are further validated by in situ and ex situ characterizations.

3.
Small ; 20(11): e2306972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143291

RESUMO

Vanadium-based compounds are identified as promising cathode materials for aqueous zinc ion batteries due to their high specific capacity. However, the low intrinsic conductivity and sluggish Zn2+ diffusion kinetics seriously impede their further practical application. Here, oxygen vacancies on NH4 V4 O10 is reported as a high-performing cathode material for aqueous zinc ion batteries via a facile hydrothermal strategy. The introduction of oxygen vacancy accelerates the ion and charge transfer kinetics, reduces the diffusion barrier of zinc ions, and establishes a stable crystal structure during zinc ion (de-intercalation). As a result, the oxygen vacancy enriched NH4 V4 O10 exhibits a high specific capacity of ≈499 mA h g-1 at 0.2 A g-1 , an excellent rate capability of 296 mA h g-1 at 10 A g-1 and the specific capacity cycling stability with 95.1% retention at 5 A g-1 for 4000 cycles, superior to the NVO sample (186.4 mAh g-1 at 5 A g-1 , 66% capacity retention).

4.
Small ; : e2404215, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973090

RESUMO

Aqueous nickel-ion batteries (ANIBs) as an emerging energy storage device attracted much attention owing to their multielectron redox reaction and dendrite-free Ni anode, yet their development is hindered by the divalent properties of Ni2+ and the lack of suitable cathode materials. Herein, a hydrated iron vanadate (Fe2V3O10.5∙1.5H2O, FOH) with a preferred orientation along the (200) plane is innovatively proposed and used as cathode material for ANIBs. The FOH cathode exhibits a remarkable capacity of 129.3 mAh g-1 at 50 mA g-1 and a super-high capacity retention of 95% at 500 mA g-1 after 700 cycles. The desirable Ni2+ storage capacity of FOH can be attributed to the preferentially oriented and tunnel structures, which offer abundant reaction active planes and a broad Ni2+ diffusion path, the abundant vacancies and high specific surface area further increase ion storage sites and accelerate ion diffusion in the FOH lattice. Furthermore, the Ni2+ storage mechanism and structural evolution in the FOH cathode are explored through ex situ XRD, ex situ Raman, ex situ XPS and other ex situ characteristics. This work opens a new way for designing novel cathode materials to promote the development of ANIBs.

5.
J Biol Inorg Chem ; 29(1): 139-158, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38175299

RESUMO

The aim to access linked tetravanadate [V4O12]4- anion with mixed copper(II) complexes, using α-amino acids and phenanthroline-derived ligands, resulted in the formation of four copper(II) complexes [Cu(dmb)(Gly)(OH2)]2[Cu(dmb)(Gly)]2[V4O12]·9H2O (1) [Cu(dmb)(Lys)]2[V4O12]·8H2O (2), [Cu(dmp)2][V4O12]·C2H5OH·11H2O (3), and [Cu(dmp)(Gly)Cl]·2H2O (4), where dmb = 4,4'-dimethioxy-2,2'-bipyridine; Gly = glycine; Lys = lysine; and dmp = 2,9-dimethyl-1,10-phenanthroline. The [V4O12]4- anion is functionalized with mixed copper(II) units in 1 and 2; while in 3, it acts as a counterion of two [Cu(dmp)]2+ units. Compound 4 crystallized as a unit that did not incorporate the vanadium cluster. All compounds present magnetic couplings arising from Cu⋯O/Cu⋯Cu bridges. Stability studies of water-soluble 3 and 4 by UV-Vis spectroscopy in cell culture medium confirmed the robustness of 3, while 4 appears to undergo ligand scrambling over time, resulting partially in the stable species [Cu(dmp)2]+ that was also identified by electrospray ionization mass spectrometry at m/z = 479. The in vitro cytotoxicity activity of 3 and 4 was determined in six cancer cell lines; the healthy cell line COS-7 was also included for comparative purposes. MCF-7 cells were more sensitive to compound 3 with an IC50 value of 12 ± 1.2 nmol. The tested compounds did not show lipid peroxidation in the TBARS assay, ruling out a mechanism of action via reactive oxygen species formation. Both compounds inhibited cell migration at 5 µM in wound-healing assays using MCF-7, PC-3, and SKLU-1 cell lines, opening a new window to study the anti-metastatic effect of mixed vanadium-copper(II) systems.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Cobre/farmacologia , Cobre/química , Antineoplásicos/química , Fenantrolinas/química , Vanádio/farmacologia , DNA/química , Células MCF-7 , Ânions , Fenômenos Magnéticos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Ligantes
6.
Chemphyschem ; 25(11): e202400141, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38462507

RESUMO

The most challenging obstacle for photocatalysts to efficiently harvest solar energy is the sluggish surface redox reaction (e. g., oxygen evolution reaction, OER) kinetics, which is believed to originate from interface catalysis rather than the semiconductor photophysics. In this work, we developed a light-modulated transient photocurrent (LMTPC) method for investigating surface charge accumulation and reaction on the W-doped bismuth vanadate (W : BiVO4) photoanodes during photoelectrochemical water oxidation. Under illuminating conditions, the steady photocurrent corresponds to the charge transfer rate/kinetics, while the integration of photocurrent (I~t) spikes during the dark period is regarded as the charge density under illumination. Quantitative analysis of the surface hole densities and photocurrents at 0.6 V vs. reversible hydrogen electrode results in an interesting rate-law kinetics switch: a 3rd-order charge reaction behavior appeared on W : BiVO4, but a 2nd-order charge reaction occurred on W : BiVO4 surface modified with ultrathin Bi metal-organic-framework (Bi-MOF). Consequently, the photocurrent for water oxidation on W : BiVO4/Bi-MOF displayed a 50 % increment. The reaction kinetics alternation with new interface reconstruction is proposed for new mechanism understanding and/or high-performance photocatalytic applications.

7.
Biotechnol Bioeng ; 121(9): 2780-2792, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38711263

RESUMO

Pretreatment is crucial for effective enzymatic saccharification of lignocellulose such as sugarcane bagasse (SCB). In the present study, SCB was pretreated with five kinds of heterogeneous Fenton-like systems (HFSs), respectively, in which α-FeOOH, α-Fe2O3, Fe3O4, and FeS2 worked as four traditional heterogeneous Fenton-like catalysts (HFCs), while FeVO4 worked as a novel HFC. The enzymatic reducing sugar conversion rate was then compared among SCB after different heterogeneous Fenton-like pretreatments (HFPs), and the optimal HFS and pretreatment conditions were determined. The mechanism underlying the difference in saccharification efficiency was elucidated by analyzing the composition and morphology of SCB. Moreover, the ion dissolution characteristics, variation of pH and Eh values, H2O2 and hydroxyl radical (·OH) concentration of FeVO4 and α-Fe2O3 HFSs were compared. The results revealed that the sugar conversion rate of SCB pretreated with FeVO4 HFS reached up to 58.25%, which was obviously higher than that under other HFPs. In addition, the surface morphology and composition of the pretreated SCB with FeVO4 HFS were more conducive to enzymatic saccharification. Compared with α-Fe2O3, FeVO4 could utilize H2O2 more efficiently, since the dissolved Fe3+ and V5+ can both react with H2O2 to produce more ·OH, resulting in a higher hemicellulose and lignin removal rate and a higher enzymatic sugar conversion rate. It can be concluded that FeVO4 HFP is a promising approach for lignocellulose pretreatment.


Assuntos
Celulose , Peróxido de Hidrogênio , Ferro , Saccharum , Vanadatos , Saccharum/química , Saccharum/metabolismo , Celulose/química , Celulose/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Ferro/química , Ferro/metabolismo , Vanadatos/química , Celulase/química , Celulase/metabolismo , Lignina/química , Lignina/metabolismo
8.
Nanotechnology ; 35(20)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38198714

RESUMO

In the supercapacitor field, negative electrodes are mainly concentrated in carbon-based materials, such as activated carbon, carbon nanotubes, graphene, and so forth. However, materials based on metal-organic frameworks (MOFs) as negative active components are relatively rare. Herein, a series of composite materials based on graphene oxide (GO) and vanadate-based Fe-organic frameworks have been prepared by hydrothermal method namely GO/Fe-VO4-BIPY. The deposition amount of polyoxometalate-based metal-organic frameworks (POMOFs) on the surface of graphene is adjusted by changing the content of POMOFs. Through the deposition, it can effectively reduce the accumulation between graphene, and increase the dispersion of POMOFs. As a result, the charge storage performance of the as-obtained materials is greatly improved. Among these materials, GO/Fe-VO4-BIPY-1 has the most prominent performance, with a specific capacitance of 190 F g-1at 0.5 A g-1, which is attributed to the excellent synergistic effect between the Faraday chemical reaction and electric double-layer capacitance. In comparison with pristine Fe-VO4-BIPY, GO/Fe-VO4-BIPY-1 delivers more excellent surface area and therefore exhibits abundant redox reaction sites, achieving better electrochemical performance the best. After assembly with the positive Ni(OH)2electrode, the maximum energy density of 46.84 W h kg-1at a power density of 850 W kg-1is achieved.

9.
Luminescence ; 39(1): e4612, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37927204

RESUMO

Red and green rare-earth ion (RE3+ ) (RE = Eu, Tb):MgLa2 V2 O9 micro-powder phosphors were produced utilizing a standard solid-state chemical process. The X-ray diffraction examination performed on the phosphors showed that they were crystalline and had a monoclinic structure. The particles grouped together, as shown in the scanning electron microscopy (SEM) images. Powder phosphors were examined using a variety of spectroscopic techniques, including photoluminescence (PL), Fourier-transform infrared, and energy dispersive X-ray spectroscopy. Brilliant red emission at 615 nm (5 D0  â†’ 7 F2 ) having an excitation wavelength (λexci ) of 396 nm (7 F0  â†’ 5 L6 ) and green emission at 545 nm (5 D4  â†’ 7 F5 ) having an λexci  = 316 nm (5 D4  â†’ 7 F2 ) have both been seen in the emission spectra of Tb3+ :MgLa2 V2 O9 nano-phosphors. The emission mechanism that is raised in Eu3+ :MgLa2 V2 O9 and Tb3+ :MgLa2 V2 O9 powder phosphors has been explained in an energy level diagram.


Assuntos
Substâncias Luminescentes , Metais Terras Raras , Substâncias Luminescentes/química , Pós , Metais Terras Raras/química , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
10.
Luminescence ; 39(2): e4686, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38359905

RESUMO

Warm red-emitting praseodymium-doped LiSrVO4 phosphors were synthesized via solid-state reaction. The phase formation was verified using an X-ray diffraction study and the morphology was investigated using a scanning electron microscope study. The LiSrVO4 :Pr3+ phosphors emitted red light when exposed to ultraviolet light, indicating their possibility for use in warm white light-emitting diodes (WLEDs). Furthermore, the effect of charge compensators on the luminescence characteristics was addressed. The decay time was investigated using time-resolved photoluminescence. Furthermore, thermal quenching was analyzed through temperature-dependent photoluminescence spectra. Their sensitivity was calculated using temperature-dependent decay time analysis. The colour purity of the emitted light could be measured by photometric analysis. This comprehensive investigation provides a thorough understanding of the luminescence properties of phosphors for WLED applications.


Assuntos
Luminescência , Luz Vermelha , Difração de Raios X , Raios Ultravioleta , Temperatura
11.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611832

RESUMO

In order to expand the application of bismuth vanadate (BiVO4) to the field of photoelectrochemistry, researchers have explored the potential of BiVO4 in catalyzing or degrading organic substances, potentially presenting a green and eco-friendly solution. A study was conducted to investigate the impact of electrolytes on the photocatalysis of benzyl alcohol by BiVO4. The research discovered that, in an acetonitrile electrolyte (pH 9) with sodium bicarbonate, BiVO4 catalyzed benzyl alcohol by introducing saturated V5+. This innovation addressed the issue of benzyl alcohol being susceptible to catalysis in an alkaline setting, as V5+ was prone to dissolution in pH 9 on BiVO4. The concern of the photocorrosion of BiVO4 was mitigated through two approaches. Firstly, the incorporation of a non-aqueous medium inhibited the formation of active material intermediates, reducing the susceptibility of the electrode surface to photocorrosion. Secondly, the presence of saturated V5+ further deterred the leaching of V5+. Concurrently, the production of carbonate radicals by bicarbonate played a vital role in catalyzing benzyl alcohol. The results show that, in this system, BiVO4 has the potential to oxidize benzyl alcohol by photocatalysis.

12.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257285

RESUMO

In this work, a surface dispersed heterojunction of BiVO4-nanoparticle@WO3-nanoflake was successfully prepared by hydrothermal combined with solvothermal method. We optimized the morphology of the WO3 nanoflakes and BiVO4 nanoparticles by controlling the synthesis conditions to get the uniform BiVO4 loaded on the surface of WO3 arrays. The phase composition and morphology evolution with different reaction precursors were investigated in detail. When used as photoanodes, the WO3/BiVO4 composite exhibits superior activity with photocurrent at 3.53 mA cm-2 for photoelectrochemical (PEC) water oxidation, which is twice that of pure WO3 photoanode. The superior surface dispersion structure of the BiVO4-nanoparticle@WO3-nanoflake heterojunction ensures a large effective heterojunction area and relieves the interfacial hole accumulation at the same time, which contributes to the improved photocurrents together with the stability of the WO3/BiVO4 photoanodes.

13.
Molecules ; 29(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202927

RESUMO

Aqueous zinc ion batteries (AZIBs) have received a lot of attention in electrochemical energy storage systems for their low cost, environmental compatibility, and good safety. However, cathode materials still face poor material stability and conductivity, which cause poor reversibility and poor rate performance in AZIBs. Herein, a heterogeneous structure combined with cation pre-intercalation strategies was used to prepare a novel CaV6O16·3H2O@Ni0.24V2O5·nH2O material (CaNiVO) for high-performance Zn storage. Excellent energy storage performance was achieved via the wide interlayer conductive network originating from the interlayer-embedded metal ions and heterointerfaces of the two-phase CaNiVO. Furthermore, this unique structure further showed excellent structural stability and led to fast electron/ion transport dynamics. Benefiting from the heterogeneous structure and cation pre-intercalation strategies, the CaNiVO electrodes showed an impressive specific capacity of 334.7 mAh g-1 at 0.1 A g-1 and a rate performance of 110.3 mAh g-1 at 2 A g-1. Therefore, this paper provides a feasible strategy for designing and optimizing cathode materials with superior Zn ion storage performance.

14.
Angew Chem Int Ed Engl ; 63(4): e202316218, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38069527

RESUMO

High-efficient photoelectrocatalytic direct ammonia oxidation reaction (AOR) conducted on semiconductor photoanodes remains a substantial challenge. Herein, we develop a strategy of simply introducing ppm levels of Cu ions (0.5-10 mg/L) into NH3 solutions to significantly improve the AOR photocurrent of bare BiVO4 photoanodes from 3.4 to 6.3 mA cm-2 at 1.23 VRHE , being close to the theoretical maximum photocurrent of BiVO4 (7.5 mA cm-2 ). The surface charge-separation efficiency has reached 90 % under a low bias of 0.8 VRHE . This AOR exhibits a high Faradaic efficiency (FE) of 93.8 % with the water oxidation reaction (WOR) being greatly suppressed. N2 is the main AOR product with FEs of 71.1 % in aqueous solutions and FEs of 100 % in non-aqueous solutions. Through mechanistic studies, we find that the formation of Cu-NH3 complexes possesses preferential adsorption on BiVO4 surfaces and efficiently competes with WOR. Meanwhile, the cooperation of BiVO4 surface effect and Cu-induced coordination effect activates N-H bonds and accelerates the first rate-limiting proton-coupled electron transfer for AOR. This simple strategy is further extended to other photoanodes and electrocatalysts.

15.
Angew Chem Int Ed Engl ; 63(23): e202402435, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566410

RESUMO

Strong metal-support interaction (SMSI) is widely proposed as a key factor in tuning catalytic performances. Herein, the classical SMSI between Au nanoparticles (NPs) and BiVO4 (BVO) supports (Au/BVO-SMSI) is discovered and used innovatively for photoelectrochemical (PEC) water splitting. Owing to the SMSI, the electrons transfer from V4+ to Au NPs, leading to the formation of electron-rich Au species (Auδ-) and strong electronic interaction (i.e., Auδ--Ov-V4+), which readily contributes to extract photogenerated holes and promote charge separation. Benefitted from the SMSI effect, the as-prepared Au/BVO-SMSI photoanode exhibits a superior photocurrent density of 6.25 mA cm-2 at 1.23 V versus the reversible hydrogen electrode after the deposition of FeOOH/NiOOH cocatalysts. This work provides a pioneering view for extending SMSI effect to bimetal oxide supports for PEC water splitting, and guides the interfacial electronic and geometric structure modulation of photoanodes consisting of metal NPs and reducible oxides for improved solar energy conversion efficiency.

16.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310758

RESUMO

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Assuntos
Fibrose Pulmonar Idiopática , Vanádio , Masculino , Humanos , Camundongos , Animais , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacologia , Vanádio/toxicidade , Vanádio/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação/patologia , Mamíferos
17.
Small ; 19(15): e2206885, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683219

RESUMO

Artificial active matter often self-propels by creating gradients of one or more species or quantities. For chemical swimmers, most frequently either O2 or H+ that are created in certain catalytic reactions are causing the interfacial flows which drive the self-propulsion. While the palette of reactions is extending constantly, especially toward more bio-compatible fuels, the depletion of species is often overlooked. Here, the photodeposition of metal species on BiVO4 micro swimmers is considered. During the photodeposition reaction, metal ions are removed from the solution creating a depleted region around the particle. The ability of this depletion to drive active motion of artificial micro swimmers, as well as the influences of different metal ions and counter ions on the motion are investigated and cross compared.

18.
Small ; 19(50): e2304668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626454

RESUMO

The inherent slow diffusion dynamics of aqueous zinc-ion batteries (AZIBs) act as a significant hindrance to their universal utilization as energy storage systems, largely attributed to the scarcity of superior cathode materials. In this study, a novel method that amalgamates oxygen defect engineering and polymer intercalation, guided by theoretical computations, to confront this challenge, is introduced. This approach begins with density functional theory calculations, demonstrating that the shielding effect rendered by polypyrrole (PPy) between NH4 V3 O8 (NVO) layers, along with the cooperative influence of oxygen defects (Od ), optimizes the kinetic transport of Zn2+ . Leveraging these theoretical outcomes, a two-step hydrothermal synthesis procedure is devised to fabricate PPy-intercalated NVO embedded with Od (NVO-Od @PPy). The empirical findings corroborate the theoretical predictions, showcasing that the NVO-Od @PPy//Zn system manifests exceptional cycling stability. Specifically, the NVO-Od @PPy electrode delivers an optimal reversible capacity, yielding 421 mAh g-1 at a current density of 0.1 A g-1 . Remarkably, even at an elevated current density of 10 A g-1 , it sustains a capacity of 175.7 mAh g-1 , while maintaining a capacity retention of 99% over 1000 cycles. This research provides pivotal insights for the engineering of high-performing cathode materials for AZIBs, paving the way for their future advancements.

19.
Small ; 19(9): e2205246, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581560

RESUMO

Boosting charge separation and transfer of photoanodes is crucial for providing high viability of photoelectrochemical hydrogen (H2 ) generation. Here, a structural engineering strategy is designed and synthesized for uniformly coating an ultrathin CoFe bimetal-organic framework (CoFe MOF) layer over a BiVO4 photoanode for boosted charge separation and transfer. The photocurrent density of the optimized BiVO4 /CoFe MOF(NA) photoanode reaches a value of 3.92 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), up to 6.03 times that of pristine BiVO4 , due to the greatly increased efficiency of charge transfer and separation. In addition, this photoanode records one onset potential that is considerably shifted negatively when compared to BiVO4 . Transient absorption spectroscopy reveals that the CoFe MOF(NA) prolongs charge recombination lifetime by blocking the hole-transfer pathway from the BiVO4 to its surface trap states. This work sheds light on boosting charge separation and transfer through structural engineering to enhance the photocurrent of photoanodes for solar H2 production.

20.
Small ; 19(46): e2303307, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37467263

RESUMO

Aqueous zinc-ion batteries (AZIBs) have attracted the attention of researchers because of their high theoretical capacity and safety. Among the many vanadium-based AZIB cathode materials, zinc vanadate is of great interest as a typical phase in the dis-/charge process. Here, a remarkable method to improve the utilization rate of zinc vanadate cathode materials is reported. In situ growth of Zn2 (V3 O8 )2 on carbon cloth (CC) as the cathode material (ZVO@CC) of AZIBs. Compared with the Zn2 (V3 O8 )2 cathode material bonded on titanium foil (ZVO@Ti), the specific capacity increases from 300 to 420 mAh g-1 , and the utilization rate of the material increases from 69.60% to 99.2%. After the flexible device is prepared, it shows the appropriate specific capacity (268.4 mAh g-1 at 0.1 A g-1 ) and high safety. The method proposed in this work improves the material utilization rate and enhances the energy density of AZIB and also has a certain reference for the other electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA