RESUMO
Myristica fragrans is a well-known species for flavoring many food products and for formulation of perfume and medicated balm. It is also used to treat indigestion, stomach ulcers, liver disorders, and, as emmenagogue, diaphoretic, diuretic, nervine, and aphrodisiac. We examined antioxidant properties and bioactive compounds in various solvent extracts from the seeds of M. fragrans. Methanol, ethanol, and acetone extracts exhibited relatively strong antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide radical, and hydroxyl radical scavenging tests. Furthermore, methanol extracts also displayed significant anti-α-glucosidase activity. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated the ten higher content compounds and analyzed antioxidant and anti-α-glucosidase activities. Among the isolates, dehydrodiisoeugenol, malabaricone B and malabaricone C were main antioxidant components in seeds of M. fragrans. Malabaricone C exhibited stronger antioxidant capacities than others based on lower half inhibitory concentration (IC50) values in DPPH and ABTS radical scavenging assays, and it also showed significant inhibition of α-glucosidase. These results shown that methanol was found to be the most efficient solvent for extracting the active components from the seeds of M. fragrans, and this material is a potential good source of natural antioxidant and α-glucosidase inhibitor.
Assuntos
Antioxidantes/química , Inibidores de Glicosídeo Hidrolases/química , Myristica/química , Extratos Vegetais/química , Sementes/química , Acetona/química , Antioxidantes/farmacologia , Etanol/química , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Metanol/química , Resorcinóis/química , Resorcinóis/farmacologia , Solventes/química , alfa-Glucosidases/metabolismoRESUMO
Crataegus pinnatifida is used to treat various diseases, including indigestion, congestive heart failure, hypertension, atherosclerosis, and myocardial dysfunction. We evaluated antioxidant and anti-α-glucosidase activities of various solvent extracts and major bioactive components from the fruit of C. pinnatifida. Ethyl acetate extracts showed potent antioxidant activities with IC50 values of 23.26 ± 1.97 and 50.73 ± 8.03 µg/mL, respectively, in DPPH and ABTS radical scavenging assays. Acetone extract exhibited significant anti-α-glucosidase activity with IC50 values of 42.35 ± 2.48 µg/mL. HPLC analysis was used to examine and compare the content of active components in various solvent extracts. We isolated four active compounds and evaluated their antioxidant and anti-α-glucosidase properties. Among the isolated compounds, chlorogenic acid and hyperoside showed potential antioxidant activities in ABTS and superoxide radical scavenging assays. Moreover, hyperoside also displayed stronger anti-α-glucosidase activity than other isolates. The molecular docking model and the hydrophilic interactive mode of anti-α-glucosidase assay revealed that hyperoside might have a higher antagonistic effect than positive control acarbose. The present study suggests that C. pinnatifida and its active extracts and components are worth further investigation and might be expectantly developed as the candidates for the treatment or prevention of oxidative stress-related diseases and hyperglycemia.
RESUMO
The rhizome of Anemarrhena asphodeloides Bunge (AA, family Liliaceae) is a famous and frequently used herbal drug in the traditional medicine of Northeast Asia, under vernacular name "zhimu". A. asphodeloides has been used as an anti-inflammatory, antipyretic, anti-platelet aggregation, anti-depressant, and anti-diabetic agent in traditional Chinese medicine. We examined the antioxidant, anti-acetylcholinesterase (AChE), and anti-α-glucosidase activities of various solvent extracts and the main bioactive compounds from the rhizome of A. asphodeloides. Acetone extract exhibited comparatively high antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric-reducing antioxidant power (FRAP) assays. A water extract exhibited relatively strong antioxidant activity by superoxide radical scavenging test. Furthermore, dichloromethane, chloroform, and n-hexane extracts showed significant anti-α-glucosidase activities. Finally, ethanol and dichloromethane extracts exhibited relatively strong AChE inhibitory activity. HPLC analysis was used to examine and compare various solvent extracts for their compositions of isolates. We isolated four major chemical constituents and analyzed their antioxidant, anti-α-glucosidase, and AChE inhibitory activities. The bioactivity assays showed that mangiferin displayed the most potential antioxidant activities via FRAP, ABTS, DPPH, and superoxide assays and also exhibited the most effective anti-AChE and anti-α-glucosidase activities among all the isolates. The present study suggests that A. asphodeloides and its active extracts and components are worth further investigation and might be expected to develop as a candidate for the treatment or prevention of oxidative stress-related diseases, AChE inhibition, and hyperglycemia.
RESUMO
Portulaca oleracea is a well-known species for traditional medicine and food homology in Taiwan. In traditional medicine, P. oleracea is also used to treat gastrointestinal disorders, liver inflammation, fever, severe inflammation, and headaches. We investigated antioxidant, anti-tyrosinase, and anti-α-glucosidase activities of various solvent extracts and major bioactive components from P. oleracea. Ethanol and acetone extracts showed potent DPPH, ABTS, and hydroxyl radical scavenging activities. Chloroform and n-hexane extracts displayed significant superoxide radical scavenging activity. Furthermore, ethyl acetate and acetone extracts of P. oleracea showed potent anti-tyrosinase and anti-α-glucosidase activities. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated seven major compounds and analyzed their antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. Seven active compounds of P. oleracea, especially quercetin, rosmarinic acid, and kaempferol, exhibited obvious antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. The molecular docking model and the hydrophilic interactive mode of tyrosinase and α-glucosidase revealed that active compounds might have a higher antagonistic effect than commonly inhibitors. Our result shows that the active solvent extracts and their components of P. oleracea have the potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors. Our results suggest that the active solvent extracts of P. oleracea and their components have potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors.