Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(3): 495-512.e11, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38395698

RESUMO

Na+/K+-ATPase (NKA) plays an important role in the central nervous system. However, little is known about its function in the microglia. Here, we found that NKAα1 forms a complex with the purinergic P2X7 receptor (P2X7R), an adenosine 5'-triphosphate (ATP)-gated ion channel, under physiological conditions. Chronic stress or treatment with lipopolysaccharide plus ATP decreased the membrane expression of NKAα1 in microglia, facilitated P2X7R function, and promoted microglia inflammatory activation via activation of the NLRP3 inflammasome. Accordingly, global deletion or conditional deletion of NKAα1 in microglia under chronic stress-induced aggravated anxiety-like behavior and neuronal hyperexcitability. DR5-12D, a monoclonal antibody that stabilizes membrane NKAα1, improved stress-induced anxiety-like behavior and ameliorated neuronal hyperexcitability and neurogenesis deficits in the ventral hippocampus of mice. Our results reveal that NKAα1 limits microglia inflammation and may provide a target for the treatment of stress-related neuroinflammation and diseases.


Assuntos
Microglia , Receptores Purinérgicos P2X7 , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Ansiedade , Microglia/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
2.
Cell ; 167(4): 961-972.e16, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773481

RESUMO

Memories about sensory experiences are tightly linked to the context in which they were formed. Memory contextualization is fundamental for the selection of appropriate behavioral reactions needed for survival, yet the underlying neuronal circuits are poorly understood. By combining trans-synaptic viral tracing and optogenetic manipulation, we found that the ventral hippocampus (vHC) and the amygdala, two key brain structures encoding context and emotional experiences, interact via multiple parallel pathways. A projection from the vHC to the basal amygdala mediates fear behavior elicited by a conditioned context, whereas a parallel projection from a distinct subset of vHC neurons onto midbrain-projecting neurons in the central amygdala is necessary for context-dependent retrieval of cued fear memories. Our findings demonstrate that two fundamentally distinct roles of context in fear memory retrieval are processed by distinct vHC output pathways, thereby allowing for the formation of robust contextual fear memories while preserving context-dependent behavioral flexibility.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Memória , Vias Neurais , Animais , Condicionamento Psicológico , Fenômenos Eletrofisiológicos , Medo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Optogenética , Vírus da Raiva/genética , Sinapses
3.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38418221

RESUMO

As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aß reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Feminino , Animais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Camundongos Transgênicos , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
4.
Neurobiol Dis ; 199: 106588, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960101

RESUMO

Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.


Assuntos
Comportamento Animal , Canabidiol , Dronabinol , Hipocampo , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Modelos Animais , Animais , Ratos , Dronabinol/toxicidade , Canabidiol/toxicidade , Fatores Sexuais , Córtex Pré-Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Feminino , Gravidez , Comportamento Animal/efeitos dos fármacos , Ratos Wistar , Memória/efeitos dos fármacos , Ansiedade/induzido quimicamente , Cognição/efeitos dos fármacos , Comportamento Impulsivo/efeitos dos fármacos , Psicotrópicos/toxicidade
5.
Brain Behav Immun ; 117: 224-241, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244946

RESUMO

Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain-related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL)-17A, a pro-inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL-17A-induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain-related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain-related anxiety and depression.


Assuntos
Dor Crônica , Neuralgia do Trigêmeo , Animais , Camundongos , Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Modelos Animais de Doenças , Hipocampo , Microglia
6.
Brain Behav Immun ; 121: 340-350, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074628

RESUMO

Stress is a major risk factor for the development of psychiatric disorders, including depression. However, its effects are not the same in all the subjects as only a portion of individuals exposed to stress will eventually develop negative mental outcomes, while others can be considered resilient. However, the biological processes underlying the development of a vulnerable or resilient phenotype are still poor understood. In order to cover this, we here used both transcriptomic and miRNomic based approaches in the ventral hippocampus of control (CON) and rats exposed to the chronic mild stress (CMS) paradigm, which were then divided into vulnerable (VULN) or resilient (RES) animals according to the sucrose consumption test. Transcriptomic analyses in VULN rats, compared to both the group of CON and RES animals, revealed the activation of inflammatory/immune-related pathways, specifically involved in antibodies and cytokine production, and the inhibition of pathways involved in protein synthesis. Conversely, transcriptomic data in RES animals suggested the activation of several pathways involved in neurotransmission. We then performed a mRNA-miRNA integration analysis by using miRComb R package, and we found that the most significant mRNA-miRNA pairs were involved in promoting the inflammatory status in VULN animals and, vice versa, by decreasing it in RES rats. Moreover, in VULN animals, the mRNA-miRNA combining analyses revealed the modulation of the olfactory sensory system, a key biological process that has been already found involved in the etiology of stress related disorders such as depression. Overall, our mRNA-miRNA integration-based approach identified distinct biological processes that are relevant for the development of a vulnerable or resilient phenotype in response to the negative effects of CMS exposure, which could allow the identification of novel targets for prevention or treatment.

7.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000204

RESUMO

Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.


Assuntos
Medo , Hipocampo , Proteínas de Ligação a Tacrolimo , Animais , Masculino , Medo/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Hipocampo/metabolismo , Ratos , Corticosterona/metabolismo , Corticosterona/sangue , Ratos Sprague-Dawley , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Receptores de Glucocorticoides/metabolismo , Extinção Psicológica/fisiologia
8.
J Neurosci ; 42(14): 3049-3064, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35197318

RESUMO

Anxiety disorders are a series of mental disorders characterized by anxiety and fear, but the molecular basis of these disorders remains unclear. In the present study, we find that the global Slack KO male mice exhibit anxious behaviors, whereas the Slack Y777H male mice manifest anxiolytic behaviors. The expression of Slack channels is rich in basolateral amygdala (BLA) glutamatergic neurons and downregulated in chronic corticosterone-treated mice. In addition, electrophysiological data show enhanced excitability of BLA glutamatergic neurons in the Slack KO mice and decreased excitability of these neurons in the Slack Y777H mice. Furthermore, the Slack channel deletion in BLA glutamatergic neurons is sufficient to result in enhanced avoidance behaviors, whereas Kcnt1 gene expression in the BLA or BLA-ventral hippocampus (vHPC) glutamatergic projections reverses anxious behaviors of the Slack KO mice. Our study identifies the role of the Slack channel in controlling anxious behaviors by decreasing the excitability of BLA-vHPC glutamatergic projections, providing a potential target for anxiolytic therapies.SIGNIFICANCE STATEMENT Anxiety disorders are a series of mental disorders characterized by anxiety and fear, but the molecular basis of these disorders remains unclear. Here, we examined the behaviors of loss- and gain-of-function of Slack channel mice in elevated plus maze and open field tests and found the anxiolytic role of the Slack channel. By altering the Slack channel expression in the specific neuronal circuit, we demonstrated that the Slack channel played its anxiolytic role by decreasing the excitability of BLA-vHPC glutamatergic projections. Our data reveal the role of the Slack channel in the regulation of anxiety, which may provide a potential molecular target for anxiolytic therapies.


Assuntos
Ansiedade , Complexo Nuclear Basolateral da Amígdala , Proteínas do Tecido Nervoso , Canais de Potássio Ativados por Sódio , Animais , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo
9.
J Neurosci ; 42(16): 3473-3483, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35273082

RESUMO

Decisions to act while pursuing goals in the presence of danger must be made quickly but safely. Premature decisions risk injury or death, whereas postponing decisions risk goal loss. Here we show how mice resolve these competing demands. Using microstructural behavioral analyses, we identified the spatiotemporal dynamics of approach-avoidance decisions under motivational conflict in male mice. Then we used cognitive modeling to show that these dynamics reflect the speeded decision-making mechanisms used by humans and nonhuman primates, with mice trading off decision speed for safety of choice when danger loomed. Using calcium imaging in paraventricular thalamus and optogenetic inhibition of the prelimbic cortex to paraventricular thalamus pathway, we show that this speed-safety trade off occurs because increases in paraventricular thalamus activity increase decision caution, thereby increasing approach-avoid decision times in the presence of danger. Our findings demonstrate that a discrete brain circuit involving the paraventricular thalamus and its prefrontal input adjusts decision caution during motivational conflict, trading off decision speed for decision safety when danger is close. We identify the corticothalamic pathway as central to cognitive control during decision-making under conflict.SIGNIFICANCE STATEMENT Foraging animals balance the need to seek food and energy against the conflicting needs to avoid injury and predation. This competition is fundamental to survival but rarely has a stable, correct solution. Here we show that approach-avoid decisions under motivational conflict involve strategic adjustments in decision caution controlled via a top-down corticothalamic pathway from the prelimbic cortex to the paraventricular thalamus. We identify a novel corticothalamic mechanism for cognitive control that is applicable across a range of motivated behaviors and mark paraventricular thalamus and its prefrontal cortical input as targets to remediate the deficits in decision caution characteristic of unsafe and impulsive choices.


Assuntos
Motivação , Tálamo , Animais , Tomada de Decisões/fisiologia , Comportamento Impulsivo , Masculino , Camundongos , Córtex Pré-Frontal , Recompensa
10.
Neurobiol Learn Mem ; 200: 107739, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822465

RESUMO

Remembering an experience entails linking what happened, where the event transpired, and when it occurred. Most rodent hippocampal studies involve tests of spatial memory, but fewer investigate temporal and sequential order memory. Here we provide a demonstration of rats learning an aversive sequential order task using a radial arm water maze. Male rats learned a fixed sequence of up to seven spatial locations, with each decision session separated by a temporal delay. Rats relied on visuospatial cues and the number of times they had entered the maze for a given day in order to successfully perform the task. Behavioral patterns during asymptotic performance showed similarities to the serial-position effect, especially with regards to faster first choice latency. Rats at asymptotic performance were implanted with bilateral cannula in medial prefrontal cortex, dorsal, and ventral hippocampus. After re-training, we injected muscimol to temporarily disrupt targeted brain regions. While control rats made prospective errors, rats with mPFC muscimol exhibited more retrospective errors. Rats with hippocampal muscimol no longer exhibited a prospective bias and were at chance levels in their error choices. Taken together, our results suggest disruption of mPFC, but not the hippocampus, produced an error choice bias during an aversive sequential order spatial processing task.


Assuntos
Hipocampo , Memória Espacial , Ratos , Masculino , Animais , Muscimol/farmacologia , Estudos Retrospectivos , Estudos Prospectivos , Córtex Pré-Frontal , Aprendizagem em Labirinto
11.
Neurobiol Learn Mem ; 205: 107832, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757953

RESUMO

Fear and extinction learning are thought to generate distinct and competing memory representations in the hippocampus. How these memory representations modulate the expression of appropriate behavioral responses remains unclear. To investigate this question, we used cholera toxin B subunit to retrolabel ventral hippocampal (vHPC) neurons projecting to the infralimbic cortex (IL) and basolateral amygdala (BLA) and then quantified c-Fos immediate early gene activity within these populations following expression of either contextual fear recall or contextual fear extinction recall. Fear recall was associated with increased c-Fos expression in vHPC projections to the BLA, whereas extinction recall was associated with increased activity in vHPC projections to IL. A control experiment was performed to confirm that the apparent shift in projection neuron activity was associated with extinction learning rather than mere context exposure. Overall, results indicate that hippocampal contextual fear and extinction memory representations differentially activate vHPC projections to IL and BLA. These findings suggest that hippocampal memory representations orchestrate appropriate behavioral responses through selective activation of projection pathways.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/fisiologia , Hipocampo/fisiologia
12.
Int J Neuropsychopharmacol ; 26(8): 529-536, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37480574

RESUMO

BACKGROUND: Posttraumatic stress disorder is characterized by deficits in cognitive flexibility related to dysfunction of the medial prefrontal cortex (mPFC). Exposure therapy can effectively reverse these deficits. Fear extinction in rodents bears similarity to exposure therapy. Extinction reverses chronic stress-induced deficits in cognitive flexibility on the attentional set-shifting test (AST), an mPFC-mediated process. This therapeutic effect requires activity of pyramidal neurons and brain derived neurotrophic factor (BDNF) signaling in infralimbic cortex (IL). However, the circuit mechanisms governing BDNF-mediated plasticity initiated by extinction in IL are unknown. The ventral hippocampus (vHipp) plays a role in regulating IL activity during extinction, and plasticity in vHipp is necessary for extinction memory consolidation. Therefore, we investigated the role of vHipp input to IL in the effects of extinction in reversing stress-induced cognitive deficits. METHODS: vHipp input to IL was silenced using a Gi-Designer Receptors Exclusively Activated by Designer Drugs (DREADD) via local infusion of clozapine-N-oxide (CNO) into IL before extinction. A day later, rats were tested on AST. In a separate experiment, we tested whether vHipp input to the IL induces BDNF signaling to exert therapeutic effects. We activated the vHipp using a Gq-DREADD, and injected an anti-BDNF neutralizing antibody into IL. Rats were tested on the AST 24 hours later. RESULTS: Silencing the vHipp input to IL prevented the beneficial effects of extinction in reversing stress-induced cognitive deficits. Activating vHipp input to IL in the absence of extinction was sufficient to reverse stress-induced deficits in set-shifting. The beneficial effects were blocked by local infusion of a neutralizing anti-BDNF antibody into IL. CONCLUSIONS: vHipp-driven BDNF signaling in IL is critical for extinction to counteract the deleterious cognitive effects of chronic stress.


Assuntos
Extinção Psicológica , Medo , Ratos , Animais , Córtex Cerebral , Hipocampo , Células Piramidais
13.
Brain Behav Immun ; 110: 107-118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822379

RESUMO

Clinical evidence has linked increased peripheral pro-inflammatory cytokines with post-traumatic stress disorder (PTSD) symptoms. However, whether inflammation contributes to or is a consequence of PTSD is still unclear. Previous research shows that stress can activate purinergic P2X7 receptors (P2X7Rs) on microglia to induce inflammation and behavioral changes. In this investigation, we examined whether P2X7Rs contribute to the development of PTSD-like behaviors induced by single prolonged stress (SPS) exposure in rats. Consistent with the literature, exposing adult male and female rats to SPS produced a PTSD-like phenotype of impaired fear extinction and extinction of cue-induced center avoidance one week after exposure. Next, we examined if inflammation precedes the behavioral manifestations. Three days after SPS exposure, increased inflammatory cytokines were found in the blood and hippocampal microglia showed increased expression of the P2X7R, IL-1ß, and TNF-α, suggesting increased peripheral and central inflammation before the onset of impaired fear extinction. In addition, SPS-exposed animals with impaired fear extinction recall also had more Iba1-positive microglia expressing the P2X7R in the ventral hippocampus. To determine whether P2X7Rs contribute to the PTSD-related behaviors induced by SPS exposure, we gave ICV infusions of the P2X7R antagonist, A-438079, for one week starting the day of SPS exposure. Blocking P2X7Rs prevented the SPS-induced impaired fear extinction and extinction of cue-induced center avoidance in male and female rats, suggesting that SPS activates P2X7Rs which increase inflammation to produce a PTSD-like phenotype.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Ratos , Masculino , Feminino , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Extinção Psicológica/fisiologia , Medo/fisiologia , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Estresse Psicológico
14.
Behav Brain Funct ; 19(1): 9, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231523

RESUMO

BACKGROUND: Alzheimer's disease is accompanied by an abnormal high accumulation of cis-P tau. However, the long-term changes in behavior following tau accumulation remains under debate. The present study investigated the long-term effects of tauopathy on learning and memory, synaptic plasticity, and hippocampal cell numbers. RESULTS: Cis-P tau was microinjected into the dorsal hippocampus to generate Alzheimer's like-disease model in C57BL/6 mice. Cis-P tau injected animals showed a significant impairment in learning and memory in Y-maze and Barnes maze tests. In another group of animals, the generation of long-term potentiation (LTP) was evaluated in hippocampal slices 7 months after cis-P tau injection. LTP induction was disrupted only in the dorsal but not ventral hippocampal slices. The basal synaptic transmission was also reduced in dorsal hippocampal slices. In addition, hippocampal sampling was done, and the number of cells was assessed by Nissl staining. Obtained results indicated that the number of survived cells was significantly reduced in the dorsal and ventral hippocampus of cis P-tau injected animals compared to the animals in control group. However, the decrement of cell number was higher in the dorsal compared to the ventral hippocampus. CONCLUSIONS: In conclusion, intra-hippocampal cis-P tau injection produced learning and memory impairment at 7 months after its injection. This impairment might result from LTP disruption and a significant decrease in the number of neurons in the dorsal hippocampus.


Assuntos
Hipocampo , Plasticidade Neuronal , Camundongos , Animais , Microinjeções , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Aprendizagem em Labirinto/fisiologia
15.
J Pharmacol Sci ; 152(2): 136-143, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169478

RESUMO

Biased memory processing contributes to the development and exacerbation of depression, and thus could represent a potential therapeutic target for stress-induced mental disorders. Synchronized spikes in hippocampal neurons, corresponding to sharp wave ripples (SWRs), may play a crucial role in memory reactivation. In this study, we showed that the frequency of SWRs increased in the ventral hippocampus, but not in the dorsal hippocampus, after stress exposure. Administration of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and fluvoxamine inhibited the generation of ventral hippocampal SWRs and reduced locomotor activity and local field potential power in the gamma bands. These results suggest that the antidepressant effects of SSRIs may be mediated by the suppression of ventral hippocampal SWRs.


Assuntos
Hipocampo , Inibidores Seletivos de Recaptação de Serotonina , Humanos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Potenciais de Ação , Neurônios/fisiologia
16.
Addict Biol ; 28(8): e13308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500490

RESUMO

Adolescence represents a distinctive vulnerable period when exposure to stressful situations including opioid exposure can entail lasting effects on brain and can change neural mechanisms involved in memory formation for drug-associated cues, possibly increasing vulnerability of adolescents to addiction. Herein, the effects of acute adolescent morphine exposure (AAME, two injections of 2.5 mg/kg SC morphine on PND 31) were therefore investigated 6 weeks later (adulthood) on avoidance memory and hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in transvers slices from the ventral hippocampus in adult male rats using field recordings technique. Animal body weight was measured from PND 31 throughout PND 40 and also in four time points with 1 week intervals from adolescence to adulthood (PNDs 48, 55, 62 and 69) to evaluate the effect of AAME on the weight gain. We showed that there were no effects on body weight, anxiety-like behaviour and locomotor activity, even until adulthood. There was an improved dark avoidance memory during adulthood. Finally, AAME had no effects on baseline synaptic responses and resulted in a decrease in the mean values of the field excitatory postsynaptic potential slopes required to evoke the half-maximal population spike amplitude and an enhancement of LTP magnitude (%) in the ventral CA1 during adulthood. Briefly, our results suggest long-lasting effects of acute adolescent morphine exposure on the ventral hippocampus, which begin the enhancing of synaptic plasticity and the improving of emotional memory in adulthood.


Assuntos
Potenciação de Longa Duração , Morfina , Ratos , Masculino , Animais , Morfina/farmacologia , Hipocampo , Plasticidade Neuronal , Analgésicos Opioides/farmacologia , Região CA1 Hipocampal
17.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511546

RESUMO

Of the 35 million people in the world suffering from Alzheimer's Disease (AD), up to half experience comorbid psychosis. Antipsychotics, used to treat psychosis, are contraindicated in elderly patients because they increase the risk of premature death. Reports indicate that the hippocampus is hyperactive in patients with psychosis and those with AD. Preclinical studies have demonstrated that the ventral hippocampus (vHipp) can regulate dopamine system function, which is thought to underlie symptoms of psychosis. A viral-mediated approach was used to express mutated human genes known to contribute to AD pathology: the Swedish (K670N, M671L), Florida (I716V), and London (V717I) mutations of amyloid precursor protein and two mutations (M146L and L286V) of presenilin 1 specifically in the vHipp, to investigate the selective contribution of AD-like pathology in this region. We observed a significant increase in dopamine neuron population activity and behavioral deficits in this AD-AAV model that mimics observations in rodent models with psychosis-like symptomatologies. Further, systemic administration of MP-III-022 (α5-GABAA receptor selective positive allosteric modulator) was able to reverse aberrant dopamine system function in AD-AAV rats. This study provides evidence for the development of drugs that target α5-GABAA receptors for patients with AD and comorbid psychosis.


Assuntos
Doença de Alzheimer , Transtornos Psicóticos , Ratos , Humanos , Animais , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Receptores de GABA-A/metabolismo , Dopamina/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
18.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108357

RESUMO

Antipsychotics increase the risk of death in elderly patients with Alzheimer's disease (AD). Thus, there is an immediate need for novel therapies to treat comorbid psychosis in AD. Psychosis has been attributed to a dysregulation of the dopamine system and is associated with aberrant regulation by the hippocampus. Given that the hippocampus is a key site of pathology in AD, we posit that aberrant regulation of the dopamine system may contribute to comorbid psychosis in AD. A ferrous amyloid buthionine (FAB) rodent model was used to model a sporadic form of AD. FAB rats displayed functional hippocampal alterations, which were accompanied by decreases in spontaneous, low-frequency oscillations and increases in the firing rates of putative pyramidal neurons. Additionally, FAB rats exhibited increases in dopamine neuron population activity and augmented responses to the locomotor-inducing effects of MK-801, as is consistent with rodent models of psychosis-like symptomatology. Further, working memory deficits in the Y-maze, consistent with an AD-like phenotype, were observed in FAB rats. These data suggest that the aberrant hippocampal activity observed in AD may contribute to dopamine-dependent psychosis, and that the FAB model may be useful for the investigation of comorbid psychosis related to AD. Understanding the pathophysiology that leads to comorbid psychosis in AD will ultimately lead to the discovery of novel targets for the treatment of this disease.


Assuntos
Doença de Alzheimer , Ratos , Animais , Doença de Alzheimer/patologia , Dopamina/farmacologia , Hipocampo , Neurônios Dopaminérgicos/patologia , Amiloide , Proteínas Amiloidogênicas/farmacologia , Modelos Animais de Doenças , Peptídeos beta-Amiloides/farmacologia
19.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762098

RESUMO

Pre-clinical research in aging is hampered by the scarcity of studies modeling its heterogeneity and complexity forged by pathophysiological conditions throughout the life cycle and under the sex perspective. In the case of Alzheimer's disease, the leading cause of dementia in older adults, we recently described in female wildtype and APP23 mice a survival bias and non-linear chronology of behavioral signatures from middle age to long life. Here, we present a comprehensive and multidimensional (physical, cognitive, and neuropsychiatric-like symptoms) screening and underlying neuropathological signatures in male and female 3xTg-AD mice at 2, 4, 6, 12, and 16 months of age and compared to their non-transgenic counterparts with gold-standard C57BL/6J background. Most variables studied detected age-related differences, whereas the genotype factor was specific to horizontal and vertical activities, thigmotaxis, coping with stress strategies, working memory, and frailty index. A sex effect was predominantly observed in classical emotional variables and physical status. Sixteen-month-old mice exhibited non-linear age- and genotype-dependent behavioral signatures, with higher heterogeneity in females, and worsened in naturalistically isolated males, suggesting distinct compensatory mechanisms and survival bias. The underlying temporal and spatial progression of Aß and tau pathologies pointed to a relevant cortico-limbic substrate roadmap: premorbid intracellular Aß immunoreactivity and pSer202/pThr205 tau phosphorylation in the amygdala and ventral hippocampus, and the entorhinal cortex and ventral hippocampus as the areas most affected by Aß plaques. Therefore, depicting phenotypic signatures and neuropathological correlates can be critical to unveiling preventive/therapeutic research and intervention windows and studying adaptative behaviors and maladaptive responses relevant to psychopathology.


Assuntos
Doença de Alzheimer , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Doença de Alzheimer/genética , Neuropatologia , Adaptação Psicológica , Envelhecimento
20.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629149

RESUMO

We studied changes in the expression of early genes in hippocampal cells in response to stimulation of the dorsal medial septal area (dMSA), leading to long-term potentiation in the hippocampus. Rats under urethane anesthesia were implanted with stimulating electrodes in the ventral hippocampal commissure and dMSA and a recording electrode in the CA1 area of the hippocampus. We found that high-frequency stimulation (HFS) of the dMSA led to the induction of long-term potentiation in the synapses formed by the ventral hippocampal commissure on the hippocampal CA1 neurons. One hour after dMSA HFS, we collected the dorsal and ventral hippocampi on both the ipsilateral (damaged by the implanted electrode) and contralateral (intact) sides and analyzed the expression of genes by qPCR. The dMSA HFS led to an increase in the expression of bdnf and cyr61 in the ipsilateral hippocampi and egr1 in the ventral contralateral hippocampus. Thus, dMSA HFS under the conditions of degeneration of the cholinergic neurons in the medial septal area prevented the described increase in gene expression. The changes in cyr61 expression appeared to be dependent on the muscarinic M1 receptors. Our data suggest that the induction of long-term potentiation by dMSA activation enhances the expression of select early genes in the hippocampus.


Assuntos
Anestesia , Uretana , Animais , Ratos , Potenciação de Longa Duração , Carbamatos , Amidas , Hipocampo , Neurônios Colinérgicos , Eletrodos Implantados , Ésteres , Expressão Gênica , Succímero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA