Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.037
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 86: 387-415, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375745

RESUMO

What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.


Assuntos
Proteínas de Bactérias/química , Hidrolases/química , Cetosteroides/química , Pseudomonas/enzimologia , Esteroide Isomerases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Expressão Gênica , Hidrolases/genética , Hidrolases/metabolismo , Cetosteroides/metabolismo , Cinética , Modelos Químicos , Simulação de Dinâmica Molecular , Mutação , Pseudomonas/química , Pseudomonas/genética , Espectrofotometria Infravermelho/métodos , Eletricidade Estática , Esteroide Isomerases/genética , Esteroide Isomerases/metabolismo , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 121(5): e2312571121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266049

RESUMO

We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO[Formula: see text]:7%Y from the mixed monoclinic ([Formula: see text]) [Formula: see text] antipolar orthorhombic ([Formula: see text]) phase to pure antipolar orthorhombic ([Formula: see text]) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the [Formula: see text] metastable state at 300 K. Compression also drives polar orthorhombic ([Formula: see text]) hafnia into the tetragonal ([Formula: see text]) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO[Formula: see text].

3.
Proc Natl Acad Sci U S A ; 120(42): e2313133120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812697

RESUMO

Water is a ubiquitous and vital component of living systems. Hydration, which is the interaction between water and intracellular biomolecules, plays an important role in cellular processes. However, it is technically challenging to study water structure within cells directly. Here, we demonstrate the utility and power of the water bend-libration combination band as a unique Raman spectral imaging probe of cellular hydration. Hydration maps reveal distinct water environments within subcellular compartments (e.g., nucleolus and lipid droplet) due to the spectral sensitivity of this coupled vibrational band. Spectroscopic studies using the water bend-libration are broadly applicable, offering the potential to capture the chemical complexity of hydration in numerous systems.


Assuntos
Análise Espectral Raman , Água , Água/química , Análise Espectral
4.
Proc Natl Acad Sci U S A ; 120(7): e2210061120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745806

RESUMO

Heavy metal contamination due to industrial and agricultural waste represents a growing threat to water supplies. Frequent and widespread monitoring for toxic metals in drinking and agricultural water sources is necessary to prevent their accumulation in humans, plants, and animals, which results in disease and environmental damage. Here, the metabolic stress response of bacteria is used to report the presence of heavy metal ions in water by transducing ions into chemical signals that can be fingerprinted using machine learning analysis of vibrational spectra. Surface-enhanced Raman scattering surfaces amplify chemical signals from bacterial lysate and rapidly generate large, reproducible datasets needed for machine learning algorithms to decode the complex spectral data. Classification and regression algorithms achieve limits of detection of 0.5 pM for As3+ and 6.8 pM for Cr6+, 100,000 times lower than the World Health Organization recommended limits, and accurately quantify concentrations of analytes across six orders of magnitude, enabling early warning of rising contaminant levels. Trained algorithms are generalizable across water samples with different impurities; water quality of tap water and wastewater was evaluated with 92% accuracy.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental/métodos , Escherichia coli , Metais Pesados/toxicidade , Qualidade da Água , Agricultura , Poluentes Químicos da Água/análise
5.
Proc Natl Acad Sci U S A ; 120(9): e2221690120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36821585

RESUMO

Energy flow in molecules, like the dynamics of other many-dimensional finite systems, involves quantum transport across a dense network of near-resonant states. For molecules in their electronic ground state, the network is ordinarily provided by anharmonic vibrational Fermi resonances. Surface crossing between different electronic states provides another route to chaotic motion and energy redistribution. We show that nonadiabatic coupling between electronic energy surfaces facilitates vibrational energy flow and, conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state mixing. A generalization of the Logan-Wolynes theory of quantum energy flow in many-dimensional Fermi resonance systems to the two-surface case gives a phase diagram describing the boundary between localized quantum dynamics and global energy flow. We explore these predictions and test them using a model inspired by the problem of electronic excitation energy transfer in the photosynthetic reaction center. Using an explicit numerical solution of the time-dependent Schrödinger equation for this ten-dimensional model, we find quite good agreement with the expectations from the approximate analytical theory.

6.
Proc Natl Acad Sci U S A ; 120(20): e2220852120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155895

RESUMO

Many photonic and electronic molecular properties, as well as chemical and biochemical reactivities are controlled by fast intramolecular vibrational energy redistribution (IVR). This fundamental ultrafast process limits coherence time in applications from photochemistry to single quantum level control. While time-resolved multidimensional IR-spectroscopy can resolve the underlying vibrational interaction dynamics, as a nonlinear optical technique it has been challenging to extend its sensitivity to probe small molecular ensembles, achieve nanoscale spatial resolution, and control intramolecular dynamics. Here, we demonstrate a concept how mode-selective coupling of vibrational resonances to IR nanoantennas can reveal intramolecular vibrational energy transfer. In time-resolved infrared vibrational nanospectroscopy, we measure the Purcell-enhanced decrease of vibrational lifetimes of molecular vibrations while tuning the IR nanoantenna across coupled vibrations. At the example of a Re-carbonyl complex monolayer, we derive an IVR rate of (25±8) cm-1 corresponding to (450±150) fs, as is typical for the fast initial equilibration between symmetric and antisymmetric carbonyl vibrations. We model the enhancement of the cross-vibrational relaxation based on intrinsic intramolecular coupling and extrinsic antenna-enhanced vibrational energy relaxation. The model further suggests an anti-Purcell effect based on antenna and laser-field-driven vibrational mode interference which can counteract IVR-induced relaxation. Nanooptical spectroscopy of antenna-coupled vibrational dynamics thus provides for an approach to probe intramolecular vibrational dynamics with a perspective for vibrational coherent control of small molecular ensembles.

7.
Annu Rev Phys Chem ; 75(1): 397-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941531

RESUMO

Recent theoretical and algorithmic developments have improved the accuracy with which path integral dynamics methods can include nuclear quantum effects in simulations of condensed-phase vibrational spectra. Such methods are now understood to be approximations to the delocalized classical Matsubara dynamics of smooth Feynman paths, which dominate the dynamics of systems such as liquid water at room temperature. Focusing mainly on simulations of liquid water and hexagonal ice, we explain how the recently developed quasicentroid molecular dynamics (QCMD), fast-QCMD, and temperature-elevated path integral coarse-graining simulations (Te PIGS) methods generate classical dynamics on potentials of mean force obtained by averaging over quantum thermal fluctuations. These new methods give very close agreement with one another, and the Te PIGS method has recently yielded excellent agreement with experimentally measured vibrational spectra for liquid water, ice, and the liquid-air interface. We also discuss the limitations of such methods.

8.
Annu Rev Phys Chem ; 75(1): 283-305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382566

RESUMO

Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Vibração , Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Espectrofotometria Infravermelho/métodos , Água/química , Proteínas de Membrana/química
9.
Proc Natl Acad Sci U S A ; 119(36): e2204156119, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037357

RESUMO

The dielectric properties of interfacial water on subnanometer length scales govern chemical reactions, carrier transfer, and ion transport at interfaces. Yet, the nature of the interfacial dielectric function has remained under debate as it is challenging to access the interfacial dielectric with subnanometer resolution. Here we use the vibrational response of interfacial water molecules probed using surface-specific sum-frequency generation (SFG) spectra to obtain exquisite depth resolution. Different responses originate from water molecules at different depths and report back on the local interfacial dielectric environment via their spectral amplitudes. From experimental and simulated SFG spectra at the air/water interface, we find that the interfacial dielectric constant changes drastically across an ∼1 Šthin interfacial water region. The strong gradient of the interfacial dielectric constant leads, at charged planar interfaces, to the formation of an electric triple layer that goes beyond the standard double-layer model.

10.
Proc Natl Acad Sci U S A ; 119(49): e2212497119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454753

RESUMO

Nanoconfined few-molecule water clusters are invaluable systems to study fundamental aspects of hydrogen bonding. Unfortunately, most experiments on water clusters must be performed at cryogenic temperatures. Probing water clusters in noncryogenic systems is however crucial to understand the behavior of confined water in atmospheric or biological settings, but such systems usually require either complex synthesis and/or introduce many confounding external bonds to the clusters. Here, we show that combining Raman spectroscopy with the molecular nanocapsule cucurbituril is a powerful technique to sequester and analyze water clusters in ambient conditions. We observe sharp peaks in vibrational spectra arising from a single rigid confined water dimer. The high resolution and rich information in these vibrational spectra allow us to track specific isotopic exchanges inside the water dimer, verified with density-functional theory and kinetic population modeling. We showcase the versatility of such molecular nanocapsules by tracking water cluster vibrations through systematic changes in confinement size, in temperatures up to 120° C, and in their chemical environment.


Assuntos
Nanocápsulas , Vibração , Água , Polímeros , Análise Espectral Raman
11.
Nano Lett ; 24(40): 12582-12589, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39345120

RESUMO

Fermi resonance is a phenomenon involving the hybridization of two coincidentally quasi-degenerate states that is observed in the vibrational or electronic spectra of molecules. Despite numerous examples in molecular systems, vibrational Fermi resonances in dispersive semiconducting systems remain largely unexplored due to the rarity of occurrence. Here we report a vibrational Fermi resonance in atomically thin black phosphorus. The Fermi resonance arises via anharmonic mixing of a fundamental Raman mode and a Davydov component of an infrared mode, leading to a doublet with mixed character. The extent of Fermi coupling can be modulated by the application of external biaxial strain. The consequences of Fermi hybridization are revealed by electronic resonance effects in the thickness-dependent and excitation-wavelength-dependent Raman spectrum, which is predicted by ab initio hybrid functional simulations including excitonic interactions. This work reveals new insight into electron-phonon coupling in black phosphorus and demonstrates a novel method for modulating Fermi resonances in 2D semiconductors.

12.
Nano Lett ; 24(32): 9808-9815, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39089683

RESUMO

Static electric fields play a considerable role in a variety of molecular nanosystems as diverse as single-molecule junctions, molecules supporting electrostatic catalysis, and biological cell membranes incorporating proteins. External electric fields can be applied to nanoscale samples with a conductive atomic force microscopy (AFM) probe in contact mode, but typically, no structural information is retrieved. Here we combine photothermal expansion infrared (IR) nanospectroscopy with electrostatic AFM probes to measure nanometric volumes where the IR field enhancement and the static electric field overlap spatially. We leverage the vibrational Stark effect in the polymer poly(methyl methacrylate) for calibrating the local electric field strength. In the relevant case of membrane protein bacteriorhodopsin, we observe electric-field-induced changes of the protein backbone conformation and residue protonation state. The proposed technique also has the potential to measure DC currents and IR spectra simultaneously, insofar enabling the monitoring of the possible interplay between charge transport and other effects.

13.
Nano Lett ; 24(6): 1909-1915, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315708

RESUMO

Coupling between molecular vibrations leads to collective vibrational states with spectral features sensitive to local molecular order. This provides spectroscopic access to the low-frequency intermolecular energy landscape. In its nanospectroscopic implementation, this technique of vibrational coupling nanocrystallography (VCNC) offers information on molecular disorder and domain formation with nanometer spatial resolution. However, deriving local molecular order relies on prior knowledge of the transition dipole magnitude and crystal structure of the underlying ordered phase. Here we develop a quantitative model for VCNC by relating nano-FTIR collective vibrational spectra to the molecular crystal structure from X-ray crystallography. We experimentally validate our approach at the example of a metal organic porphyrin complex with a carbonyl ligand as the probe vibration. This framework establishes VCNC as a powerful tool for measuring low-energy molecular interactions, wave function delocalization, nanoscale disorder, and domain formation in a wide range of molecular systems.

14.
J Comput Chem ; 45(26): 2232-2241, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38831461

RESUMO

Oxazine dyes act as reporters of their near environment by the response of their fluorescence spectra. At the same time, their fluorescence spectra exhibit a pronounced vibrational progression. In this work, we computationally investigate the impact of near-environment models consisting of aggregated water as well as betaine molecules on the vibrational profile of fluorescence spectra of different oxazine derivatives. For aggregated betaine and a water molecule located above the plane of the dyes, we observe a distinct modification of the vibrational profile, which is more pronounced than the effect of a continuum description of a solvent environment. Our analysis shows that this effect cannot be explained by a pure change in the electronic structure, but that also vibrational degrees of freedom of the environment can be decisive for the vibrational profile and should, hence, not generally be neglected.

15.
J Comput Chem ; 45(13): 985-994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197269

RESUMO

Thallium chemistry is experiencing unprecedented importance. Therefore, it is valuable to characterize some of the simplest thallium compounds. Stationary points along the singlet and triplet Tl 2 H 2 potential energy surface have been characterized. Stationary point geometries were optimized with the CCSD(T)/aug-cc-pwCVQZ-PP method. Harmonic vibrational frequencies were computed at the same level of theory while anharmonic vibrational frequencies were computed at the CCSD(T)/aug-cc-pwCVTZ-PP level of theory. Final energetics were obtained with the CCSDT(Q) method. Basis sets up to augmented quintuple-zeta cardinality (aug-cc-pwCV5Z-PP) were employed to obtain energetics in order to extrapolate to the complete basis set limits using the focal point approach. Zero-point vibrational energy corrections were appended to the extrapolated energies in order to determine relative energies at 0 K. It was found that the planar dibridged isomer lies lowest in energy while the linear structure lies highest in energy. The results were compared to other group 13 M 2 H 2 (M = B, Al, Ga, In, and Tl) theoretical studies and some interesting variations are found. With respect to experiment, incompatibilities exist.

16.
J Comput Chem ; 45(21): 1846-1869, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38682874

RESUMO

Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available "state-of-the-art" accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.

17.
J Comput Chem ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139057

RESUMO

The recently developed efficient protocol to explicit quantum mechanical modeling of structure and IR spectra of liquids and solutions (S. A. Katsyuba, S. Spicher, T. P. Gerasimova, S. Grimme, J. Phys. Chem. B 2020, 124, 6664) is applied to ionic liquid (IL) 1-ethyl-3-methylimidazolium bromide (EmimBr), its C2-deuterated analog [Emim-d]Br and its aqueous solutions. It is shown that the solvation strongly modifies frequencies and IR intensities of the CH/CD stretching vibrations (νCH/νCD) of the imidazolium ring. The main vibrational spectroscopic features of the neat IL are reproduced by the simulations for a cluster (EmimBr)9, in which all three imidazolium CH moieties of the solvated cation form short contacts with three Br- anions, and another two Br- anions are located on top and bottom of imidazolium ring. Cluster models of aqueous solutions reproduce the experimental vibrational frequencies of actual solutions, provided that the Br- anion of solvated contact ion pair (CIP) is situated on top of imidazolium ring, and CH/CD moieties of the latter participate in short contacts with surrounding water molecules. Both structural and spectroscopic analysis allow to interpret the short contacts CH/CD⋯Br- and CH/CD⋯OH2 as hydrogen bonds of approximately equal strength. Enthalpies of bonding of these liquid-state H-bonds, estimated with the use of empirical correlations, amount to ca. 1.4 kcal⋅mol-1, while the analogous estimates obtained for the gas-phase charged species [Emim]2Br+ increase to 5.6 kcal⋅mol-1. It is shown that formation of solvent-shared ion pair (SIP) in aqueous solution, where the counterions of IL are separated by two water molecules H-bonded to a Br- anion, produces frequency shifts ΔνCH/CD, strongly different from the case of CIP formation. This difference can be used for IR/Raman spectroscopic differentiation of the type of solvated ion pairs of EmimBr or other related ILs.

18.
J Comput Chem ; 45(11): 777-786, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38116807

RESUMO

A recent work [Ye et al. Mon. Not. R. Astron. Soc. 2023, 525, 1158] on the gas-phase formation of t-HC(O)SH, already detected in the interstellar medium, pointed out that the trans form of HC(S)OH is a potential candidate for astronomical observations. Prompted by these results, the CH 2 SO family of isomers has been investigated from an energetic point of view using a double-hybrid density functional in combination with a partially augmented triple-zeta basis set. This preliminary study showed that the most stable species of the family are the cis and trans forms of HC(O)SH and HC(S)OH. For their structural and spectroscopic characterization, a composite scheme based on coupled cluster (CC) calculations that incorporates up to the quadruple excitations and accounts for the extrapolation to the complete basis set limit and core correlation effects has been employed. This approach opens to the prediction of rotational constants with an accuracy of 0.1%. A hybrid scheme, based on harmonic frequencies computed using the CC singles, doubles and a perturbative treatment of triples method (CCSD(T)) in conjunction with a quadruple-zeta basis set, allowed us to obtain fundamental vibrational frequencies with a mean absolute error of about 1%.

19.
J Comput Chem ; 45(29): 2501-2512, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970400

RESUMO

A recent work by Marks et al. on the formation of carbamic acid in NH 3 -CO 2 interstellar ices pointed out its stability in the gas phase and the concomitant production of its dimer. Prompted by these results and the lack of information on these species, we have performed an accurate structural, energetic and spectroscopic investigation of carbamic acid and its dimer. For the former, the structural and spectroscopic characterization employed composite schemes based on coupled cluster (CC) calculations that account for the extrapolation to the complete basis set limit and core correlation effects. A first important outcome is the definitive confirmation of the nonplanarity of carbamic acid, then followed by an accurate estimate of its rotational and vibrational spectroscopy parameters. As far as the carbamic acid dimer is concerned, the investigation started from the identification of its most stable forms. For them, structure and vibrational properties have been evaluated using density functional theory, while a composite scheme rooted in CC theory has been employed for the energetic characterization. Our results allowed us to provide a better interpretation of the feature observed in the recent experiment mentioned above.

20.
J Comput Chem ; 45(14): 1130-1142, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38279637

RESUMO

The Local Vibrational Mode Analysis, initially applied to diverse molecular systems, was extended to periodic systems in 2019. This work introduces an enhanced version of the LModeA software, specifically designed for the comprehensive analysis of two and three-dimensional periodic structures. Notably, a novel interface with the Crystal package was established, enabling a seamless transition from molecules to periodic systems using a unified methodology. Two distinct sets of uranium-based systems were investigated: (i) the evolution of the Uranyl ion (UO 2 2 + ) traced from its molecular configurations to the solid state, exemplified by Cs 2 UO 2 Cl 4 and (ii) Uranium tetrachloride (UCl 4 ) in both its molecular and crystalline forms. The primary focus was on exploring the impact of crystal packing on key properties, including IR and Raman spectra, structural parameters, and an in-depth assessment of bond strength utilizing local mode perspectives. This work not only demonstrates the adaptability and versatility of LModeA for periodic systems but also highlights its potential for gaining insights into complex materials and aiding in the design of new materials through fine-tuning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA